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Abstract

Fusarium head blight (FHB) not only causes severe yield losses but also mycotoxin contamination in wheat, pos-

ing a serious threat to food security and public health. The mechanisms of resistance to FHB in wheat are critical

for effective prevention and control of the pathogen. In this research, we investigated and analyzed the metabolite
changes induced by FHB colonization in the FHB-resistant cultivar Lianmail2 through Fusarium graminearum inocu-
lation and mock inoculation. A total of 1001 metabolites were detected, 109 of which were significantly changed
due to FHB infection. The majority of these 109 metabolites belonged to alkaloids, flavonoids, phenolic acids, lipids
and organic acids. The most enriched KEGG pathways were plant hormone signal transduction and phenylpropanoid
biosynthesis, which may constitute the major defence responses to FHB challenge. The metabolite p-aminobenzoic
acid (PABA) significantly suppressed the growth of mycelia and the production of conidia in vitro. Further studies
revealed that spraying PABA at early anthesis on wheat spikes reduced the development of FHB disease. These results
provide preliminary insights into the metabolic basis of resistance in Lianmai12 and will be beneficial in the develop-
ment of potential biocontrol agents against FHB.

Keywords Wheat, Fusarium head blight, p-aminobenzoic acid, Metabolomics

*Correspondence:

Jiwei Fan

fantrta@163.com

Full list of author information is available at the end of the article

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43014-024-00291-z&domain=pdf
http://orcid.org/0000-0002-7941-5860

Tan et al. Food Production, Processing and Nutrition (2025) 7:14

Page 2 of 16

Graphical Abstract

Wheat Cultivar

Lianmail2

(L Mock Inoculation

Chemical Sensitivity

Assays

PABA Enhances
Resistance to FHB
LExogcnous Treatments

Fusarium graminearum ’
Inoculation ’

Metabolites Characterization

and Quantification

Enrichment of

Screening of Differentially

Accumulated Metabolites | KEGG Pathways

Introduction

Fusarium head blight (FHB) is one of the most destruc-
tive wheat diseases affecting grain yield and quality,
especially in the humid and subhumid environments of
temperate and subtropical wheat production areas (Singh
et al.,, 2023; Steiner et al, 2017; Zheng et al., 2021). The
disease is mainly caused by various fungal species from
the genus Fusarium. Most importantly, mycotoxins such
as deoxynivalenol or nivalenol produced by the patho-
gen accumulate in the grain and pose a serious threat to
human and animal health. Due to changes in climate and
cropping systems, FHB has become a more widespread
disease in recent decades (Alisaac et al., 2023). The mid-
dle and lower reaches of the Yangtze River are frequent
areas of FHB in China. Nowadays, FHB has become a
major disease even in the Huang-Huai wheat production
area, where it has seldom occurred. In 2012, more than
10 Mha of wheat production area in China suffered from
FHB, with a yield loss of 301.5~1877.3 kg/ha in some
areas (Zhang et al,, 2021). In 2018, the incidence area of
FHB exceeded 5.67 Mha, accounting for 37.5% of wheat
sown area in China (Huang et al.,, 2019). Chemical fungi-
cides are commonly used to control FHB and mycotoxin
contamination. However, the extensive use of chemical
fungicides not only causes severe ecological damage, but
also promotes the evolution of fungal resistance. There-
fore, the development of novel, effective and low-risk
compounds or the improvement of host resistance to
FHB are effective strategies to reduce FHB damage.

FHB resistance is a complex quantitative trait governed
by multiple small to medium effect quantitative trait
loci (QTL) and is vulnerable to different environmen-
tal conditions. Over 556 QTLs have been identified for

FHB resistance, with 8 QTLs designated from common
wheat or alien species: Fhbl (Lagudah et al, 2019; Li
et al,, 2019), Fhb2 (Cuthbert et al., 2007), Fhb3 (Qi et al,,
2008), Fhb4 (Xue et al., 2010), Fib5 (Xue et al., 2011),
Fhb6 (Cainong et al., 2015), Fhb7 (Wang et al., 2020), and
Fhb8 (Wang et al., 2024). However, the mechanisms of
resistance and susceptibility to FHB in wheat are much
less understood than the identification of QTLs. Breed-
ing of resistant cultivars has been hampered by a lack of
comprehension about the associated genetic mechanisms
(Li et al., 2018). Research on the mechanisms of FHB
resistance in wheat is essential to explore more genetic
resources and provide more options and directions for
breeding. In recent years, functional omics has become
an effective approach to the identification of potential
genes and the revealing of resistance mechanisms. Gene
expression profiles, defence mechanisms and predicted
resistance genes during Fusarium spp. challenge in wheat
have been investigated in several transcriptome studies
(Biselli et al., 2018; Li et al., 2018; Michel et al., 2021; Pan
et al., 2018; Wang et al., 2018). Researchers have widely
described the regulatory roles of phytohormones such
as abscisic acid, gibberellic acid, salicylic acid, jasmonic
acid, and ethylene in wheat defense against FHB (Brauer
et al., 2019; Buhrow et al, 2021; Wang et al, 2018),
whereas information on metabolite changes in wheat
after FHB infection is limited.

Changes in metabolic profiles have provided key
insights into the metabolic network in wheat against path-
ogen invasion, which is valuable for the exploration of
metabolites, genetic resources and novel biological con-
trol agents. Metabolomic analyses of the resistant wheat
cultivar Sumai 3 indicate that phytohormone signalling,
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phenolamine and flavonoid metabolic pathways play
roles in restricting the expansion of FHB (Zhao et al,
2022). The application of exogenous auxin increased
susceptibility to FHB, and the knockdown of TaTIRI,
the gene encoding the auxin receptor, increased resist-
ance to FHB (Su et al., 2021). Metabolomic research have
shown that phenylalanine and malate significantly inhibit
the growth of E graminearum (Dong et al., 2023), and
spraying exogenous kaempferide, apigenin, proline, and
alanine increases the resistance to FHB (Su et al., 2021;
Zhao et al,, 2021).

Several elite wheat cultivars with FHB resistance have
been developed in China through the utilization of resist-
ance genes, such as Fhbl and Fhb7. However, the major-
ity of FHB-resistant wheat germplasms are spring-like
cultivars from the middle and lower reaches of the Yang-
tze River in China, with fewer FHB-resistant cultivars
in the Huang-huai wheat production area. This study
compares the metabolic changes in response to FHB
colonization by ultra-performance liquid chromatogra-
phy-tandem mass spectrometry (UPLC-MS/MS) using
Lianmai 12, a commercial wheat cultivar that has exhib-
ited FHB resistance for years in the Huang-huai wheat
production area. The results of this study will clarify the
mechanisms of resistance to FHB infection in wheat from
a metabolite perspective. The anti-FHB activity of PABA
will be investigated to evaluate its potential as a biocon-
trol agent and to provide a new strategy for FHB control.

Materials and methods

Plant materials and FHB inoculation

This study utilized Chinese wheat cultivars, namely
Lianmail2, Lianmai7, Zhoumail8, Huaimai20, and
Huaimai33, which were planted in the greenhouse of
Lianyungang Academy of Agricultural Sciences (Lian-
yungang, China). The E graminearum strain 19JAFG
used for inoculation was obtained from Jiangsu Academy
of Agricultural Sciences and cultured on potato dextrose
agar (PDA) medium at 25°C for 3 days. Then, 5 fungal
plugs at the edge of the mycelium were transferred into
300 mL conical flasks containing 6% mung bean broth
medium and cultured with shaking at 200 rpm and 25C
for 3 days. After filtering, the conidia were counted using
a hemocytometer and diluted with sterile water to a con-
centration of 10°/mL. Since single floret inoculation is
the most commonly applied method for wheat FHB iden-
tification with good accuracy and stability, each spike was
inoculated with 10 pL conidial suspension into a single
middle floret for FHB resistance evaluation (Feng et al.,
2018; Su et al., 2021). To ensure that the spikelets were
sufficiently pathogenic at 72 h after inoculation and to
obtain adequate quantities of pathogenic spikelets for
metabolite extraction, each spike was inoculated with 10
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uL of conidial suspension into a pair of middle florets for
metabolite analysis (Zhao et al., 2021). The control plants
received a mock inoculation with 10 pL of sterile water.
The infected spikes were sealed in plastic bags for 72 h to
maintain moisture. Three groups of biological replicates,
each containing 25 spikes, were performed for all the
wheat cultivars and the percentage of scabbed spikelets
was recorded at 21 days post inoculation to evaluate FHB
resistance.

Metabolite extraction and UPLC-MS/MS

Metabolites were extracted from the inoculated spikelets
of Lianmail2 at 3 days post inoculation. Three biological
replicates of 10 spikelets each were inoculated with FHB
conidia as the treatment group. The control groups were
inoculated with sterile water as a mock inoculation. The
spikelets were harvested simultaneously and designated
FHB-1, FHB-2, FHB-3, CK-1, CK-2, and CK-3. The spike-
let samples were frozen in liquid nitrogen and stored at
-80°C for further metabolite detection.

All the chemicals and solvents used for metabolite
extraction and detection were high-performance liquid
chromatography grade. The inoculated spikelets of Lian-
mail2, FHB-1, FHB-2, FHB-3, CK-1, CK-2, and CK-3
were ground to powder after lyophilization. Metabolite
extraction was carried out by infusing 0.1 g of each spike-
let powder into 1.2 ml of pre-cooled 70% aqueous metha-
nol. Dissolved samples were placed at 4°C for 12 h, during
which time samples were vortexed six times to enhance
the extraction of metabolites. After centrifugation at
12,000 rpm for 10 min, the supernatant was collected and
filtered through a microporous membrane filter (0.22 pm
pore size) for subsequent UPLC-MS/MS analysis.

Ultra-performance liquid chromatography was per-
formed on a SHIMADZU Nexera X2 system using an
Agilent SB-C18 column. The column temperature was set
to 40°C, and the flow rate was 0.35 mL/min. The mobile
phase consisted of phase A (0.1% formic acid in ultrapure
water) and phase B (0.1% formic acid in acetonitrile). The
elution gradient was B-phase ratio of 5% at 0 min, which
was linearly increased to 95% within 9 min and main-
tained at 95% for 1 min. The B-phase ratio decreased to
5% at 10.00—11.10 min and equilibrated at 5% for 14 min.
An applied Biosystems 4500 QTRAP was used for tan-
dem mass spectrometry. The electrospray ionization
temperature was 550°C, the ion spray voltage was 5500 V
(positive ion mode)/-4500 V (negative ion mode). The ion
source gas I, gas II, and curtain gas were set to 50, 60, and
25 psi, respectively. The collision-activated dissociation
parameter was set to high. The metabolites were quan-
tified using the multiple reaction monitoring mode of a
triple quadrupole mass spectrometer.
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Chemical sensitivity assays for Fusarium

The E asiaticum strains 1312 and 0301 were obtained
from Xuzhou Academy of Agricultural Sciences. Both
the E asiaticum and F graminearum were used in the
experiment. The effects of PABA were evaluated on solid
PDA media supplemented with 0.1 mg/mL, 0.2 mg/
mL, 0.4 mg/mL, or 0.8 mg/mL PABA dissolved in 4%o
DMSO. PDA media and media supplemented with 4%o
DMSO alone were used as controls. FHB strain discs
were obtained from the growing edge of one colony plate
using a 5 mm diameter circular punch. The discs were
then inoculated separately into the centers of 90 mm
petri dishes containing solid PDA media, 4%0 DMSO-
amended PDA media, or PABA-amended PDA media.
There were three biological replicates in the experiment.
The plates were incubated for 3 days in the dark at 25°C.
The diameter of the colonies was measured daily, and a
circle was drawn along the growth edge of mycelium on
the plate for 3 days. The average colony diameter, myce-
lial growth rate, and inhibition rate (Duan et al., 2022)
were calculated.

To study the effect of PABA on Fusarium spp. conidia
production, 5 fungal discs were inoculated into 200 mL
of 6% mung bean broth medium supplemented with
0.1 mg/mL, 0.2 mg/mL, 0.4 mg/mL, or 0.8 mg/mL PABA
with shaking at 200 rpm and 25°C for 2 days. The conidia
concentrations were counted by using the hemocytom-
eter. Three sets of replicates were set up in the test.

Exogenous PABA treatments on F. graminearum-infected
spikes

Ten spikes of similar size were selected at early anthesis
and inoculated with 10 pL of 1x 10°/mL conidial suspen-
sion per spike in one middle floret. A total of 3 groups
of biological replicates were performed for the wheat
cultivars Lianmail2, Lianmai7, Zhoumail8, Huaimai20
and Huaimai33. The inoculated spikes were moisturized
in plastic bags for three days. A first spray of 2 mg/mL
PABA with 4% DMSO as solvent was then applied. A
second spray of the same concentration of PABA solution
was applied the following day. The plants in the control
group were sprayed with sterile water and 4%o. DMSO.
The percentage of scabbed spikelets of inoculated spikes
was recorded at 21 days post inoculation.

Data preprocessing and analysis

Compound analysis was based on the Metware data-
base (Metware Biotechnology Co., Ltd, Wuhan, Hubei,
China). In the characterization of substances, the isotopic
signals, the repetitive signals containing K*, Na*, NH,*
and the repetitive signals of fragment ions of higher
molecular weight are removed. Chromatographic peaks
were integrated and corrected using MultiaQuant based
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on the retention time and peak shape of each metabolite
detected in different samples, to ensure accurate qualita-
tive and quantitative analysis.

Principal component analysis (PCA) was performed
with R package prcomp. Set the argument scale=TRUE
in prcomp to standardize the data. After Log, transfor-
mation and mean centering of the data, orthogonal par-
tial least squares discriminant analysis (OPLS-DA) was
performed using the OPLSR. Anal of the R package. We
used the variable importance for projection (VIP) value
(with threshold>1) in the OPLS-DA model and the fold
change value (with threshold>2 or<0.5) to determine
differentially accumulated metabolites (DAMs) between
groups. The heatmap was plotted using the complex heat-
map of the R package. In KEGG pathway analysis, two
pathways with integrative properties, the metabolic path-
way (ko01100) and biosynthesis of secondary metabolites
(ko01110), were not involved in the analysis. Significance
analysis of experimental data for each group was per-
formed using one-way ANOVA.

Results

Wheat cultivar Lianmai12 exhibits FHB resistance

Disease symptoms caused by FHB were investigated in
the wheat cultivars Huaimai33, Lianmai7, Zhoumail$,
Huaimai20 and Lianmail2. At 21 days post inocula-
tion, the spikes inoculated with E graminearum showed
varying degrees of bleaching (Fig. 1A). Symptoms of
FHB infection on Huaimai33, Lianmai7, Zhoumail8,
and Huaimai20 were clearly observed not only on the
inoculated spikelet but also above and below it, while
Lianmail2 bleached only on the spikelets close to the
inoculation point. Notably, the rachises of Lianmail2
remained green, whereas the rachises of Huaimai33,
Lianmai7, Zhoumail8 and Huaimai20 almost bleached
because of disease development (Fig. 1B). The percent-
age of scabbed spikelets of Lianmail2 was significantly
lower than that of Huaimai33, Lianmai7, Zhoumail$,
Huaimai20 (P<0.001)(Fig. 1C). These results indicated
that Lianmail2 had better FHB resistance than the other
tested cultivars in the Huang-Huai wheat production
area.

Metabolic responses to pathogen infection

To investigate the metabolic characteristics of Lianmail2
after FHB infection, wide-targeted metabolomic analy-
sis based on UPLC-MS/MS was used. A total of 1001
metabolites were identified, including 183 flavonoids,
152 lipids, 129 phenolic acids, 107 organic acids, 104
alkaloids, 98 amino acids and derivatives, 71 saccharides
and alcohols, 60 nucleotides and derivatives, 41 lignans
and coumarins, 18 vitamins, 15 terpenoids, 6 quinones,
1 tannin, and 16 others. The identified metabolites were
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Fig. 1 Phenotypes of spikes inoculated with . graminearum at 21 days post inoculation. A Blight symptoms on the spikes of different cultivars.
B Blight symptoms on the rachises of different cultivars. C The percentage of scabbed spikelets of different cultivars. The data shown are
the means +SD. Different letters represent significantly different values (uppercase letters indicate P<0.001, lowercase letters indicate P <0.05)

analyzed by PCA to evaluate the overall magnitude of
variability between the samples. Despite slight separation
observed in one replicate of the CK group, PCA analysis
clearly distinguished between samples from the CK and
FHB groups (Fig. 2A). The two principal components
explained 60.32% of the total variance. The first princi-
pal component (PC1) and the second principal compo-
nent (PC2) explained 42.14% and 18.18%, respectively,

of the variance. The differences in metabolite responses
between the CK group and the E graminearum-inocu-
lated group were significant.

In order to filter out the information unrelated to the
classification and to maximize the distinction between
the samples, supervised multivariate statistical analysis,
OPLS-DA, was performed. As shown in the OPLS-DA
score plots, the contribution of the T score was 42% and
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Fig. 2 Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for the mock inoculated

groups (CK) and the £. graminearum inoculated groups (FHB) at 3 days post inoculation. A PCA score plots for the metabolites in the spikelets
between the CK and FHB groups. PC1 means the first principal component, PC2 means the second principal component. B OPLS-DA scatter plots
for all samples. C Permutation tests of OPLS-DA modeled on CK versus FHB groups
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the contribution of the orthogonal T score was 13.9%.
The CK group was on the left side while the FHB group
was on the right side based on the abscissa of the score
plots, which further indicated the impact of differentia-
tion on FHB infection in the wheat cultivar Lianmail2
(Fig. 2B). The model along with 200 permutation tests
showed that R2X=0.56, R?Y=1, and Q?=0.914, with
P<0.005 for both Q* and R? confirming that the model
was reliable without overfitting for subsequent DAMs
screening and analysis (Fig. 2C).

Screening and analysis of DAMs

The VIP value of the OPLS-DA model (threshold>1)
and the fold change value (threshold>2 or<0.5) were
used to screen for DAMs between the CK and FHB
groups. A total of 109 DAMs were obtained from the
screening. A heatmap of the classification and changes
in DAMs in response to FHB infection in Lianmail2 is
shown in Fig. 3. The differential metabolites in the heat-
map show opposite expression characteristics between
the CK and FHB groups, suggesting that the invasion of
FHB activates the corresponding metabolic pathways in
Lianmail2 and stimulates the synthesis of metabolites.
Alkaloids (26 compounds), flavonoids (18 compounds),
phenolic acids (17 compounds), lipids (13 compounds),
organic acids (11 compounds) were the most representa-
tive DAMs among the compound classes.

Table 1 shows the 50 DAMs with |Log, fold change|> 2.
The order of the DAMs is sorted by fold change value.
The plant hormone signal transduction (ko04075) path-
way annotated with N6-isopentenyladenine and jasmonic
acid, the flavonoid biosynthesis (ko00941) pathway anno-
tated with sakuranetin, naringenin and neohesperidin,
the isoflavonoid biosynthesis (ko00943) pathway anno-
tated with naringenin and prunetin generally involved
in plant defence and stress responses. The p-coumaryl
alcohol and coniferyl alcohol were annotated to phe-
nylpropanoid biosynthesis (ko00940), which is respon-
sible for cell wall formation in plants. Figure 4A shows
the top 15 upregulated DAMs and top 5 downregulated
DAMs according to the fold change value. Among the
109 DAMs, L-prolyl-L-phenylalanine (18,321.48-fold),
3,4-O-dicaffeoylquinic acid methyl ester (15,773.70-fold),
3,24-dihydroxy-17,21-semiacetal-12(13)oleanolic  fruit
(11,361.04-fold), heptadecanoic acid (5247.19-fold), and
3,4-dimethoxyphenyl acetic acid (4868.00-fold) were sig-
nificantly upregulated. The VIP score plot (Fig. 4B) shows
the top 20 DAMs according to the VIP value. Volcano
plot analysis was further applied to visualize the differ-
ential metabolites between the CK and FHB groups. The
volcano plot shows that 97 metabolites were upregulated
and 12 metabolites were downregulated in Lianmail2
after FHB invasion (Fig. 4C). The metabolites labeled
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'a to g’ in Fig. 4C are L-prolyl-L-phenylalanine (a),
3,4-O-dicaffeoylquinic acid methyl ester (b), 3,24-dihy-
droxy-17,21-semiacetal-12(13)oleanolic fruit (c), hepta-
decanoic acid (d), 3,4-dimethoxyphenyl acetic acid (e),
p-aminobenzoic acid (f) and N-formylmethionine (g).
These compounds are the top 15 upregulated DAMs by
the fold change value and the top 20 by the VIP value. It
is hypothesized that these compounds may be associated
with resistance to FHB in Lianmail2.

Enrichment of KEGG pathways

To identify potential pathways involved in resistance
responses following FHB attack in Lianmail2, differen-
tial metabolites were mapped to the KEGG database and
332 of them could be annotated, of which 46 were DAMs.
As shown in Fig. 5, the two pathways enriched with the
greatest number of DAMs were phenylpropanoid bio-
synthesis and flavonoid biosynthesis. The phenylpropa-
noid biosynthesis pathway was the most abundant class
detected in this study. A total of 24 metabolites were
mapped to KEGG pathways, and 8 of them were DAMs:
p-coumaraldehyde, cinnamic acid, p-coumaryl alcohol,
caffeic acid, coniferyl alcohol, ferulic acid, trans-5-O-(p-
coumaroyl)shikimate, and coniferin. The most significant
pathways of enrichment at 72 h postinfection were the
plant hormone signal transduction pathway and phenyl-
propanoid biosynthesis pathway. In addition, the plant
hormone signal transduction, riboflavin metabolism,
folate biosynthesis, betalain biosynthesis and isoflavonoid
biosynthesis were the pathways with the highest value
of rich factor. Three DAMs, namely, N6-isopentenylad-
enine, jasmonic acid and (-)-jasmonoyl-L-isoleucine,
were mapped to plant hormone signal transduction path-
ways. Ribitol, lumichrome and riboflavin (vitamin B2)
were mapped to riboflavin metabolism pathways. Only
one DAM was mapped to the folate biosynthesis path-
way (p-aminobenzoic acid) or the betalain biosynthesis
pathway (3,4-dihydroxy-L-phenylalanine). Two DAM:s,
namely, naringenin and prunetin were assigned to iso-
flavonoid biosynthesis pathways. With the exception of
the betalain biosynthesis pathway, most of the DAMs
mapped to the above pathways were significantly upreg-
ulated after inoculation with FHB, implying that these
metabolic pathways or metabolites may be associated
with the FHB defense response mechanism in Lianmail2.

The anti-FHB activity of PABA on wheat

An in vitro assay of partial DAMs revealed the antifungal
activity of PABA. FHB pathogenic strains, 1 E gramine-
arum strain and 2 E asiaticum strains, discs (5 mm)
were inoculated on solid PDA media, DMSO-amended
PDA media, and PABA-amended PDA media for three
days (Fig. 6A). The mycelial growth inhibition rate did
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Fig. 3 The heat map of the 109 differentially accumulated metabolites. CK: mock inoculated groups; FHB: £. graminearum inoculated groups



Tan et al. Food Production, Processing and Nutrition (2025) 7:14 Page 8 of 16

Table 1 Partial differentially accumulated metabolites with |Log, fold change|>2

Compound names CAS vip Fold change KEGG pathways

(Log,)
L-prolyl-L-phenylalanine 13,589-02-1 1.54 14.16 /
3,4-O-dicaffeoylquinic acid methyl ester / 1.54 13.95 /
3,24-dihydroxy-17,21-semiacetal-12(13)oleanolic fruit / 1.54 1347 /
heptadecanoic acid 506-12-7 154 12.36 /
3,4-dimethoxyphenyl acetic acid 93-40-3 1.54 12.25 /
tryptamine 61-54-1 152 4.88 ko00380,ko00901,ko01100,ko01110
p-coumaroylmalic acid / 1.29 4.88 /
lysoPE 17:1 / 153 479 /
lysoPE 17:1(2n isomer) / 153 479 /
lysoPE 16:1(2n isomer) / 1.53 4.67 /
p-aminobenzoic acid 150-13-0 154 437 ko00790,ko01100
N-feruloylserotonin 68,573-23-9 1.52 4.31 /
N-feruloyltryptamine 53,905-13-8 1.53 4.14 /
N-formylmethionine 4289-98-9 1.54 3.96 ko00270
serotonin 50-67-9 1.54 387 ko00380,ko01100
ribosyladenosine / 1.54 3.86 /
lysoPE 16:1 / 154 3.83 /
sakuranetin 2957-21-3 152 372 ko00941,ko01110
7-O-methylnaringenin / 1.52 3.69 /
N6-isopentenyladenine 2365-40-4 1.22 352 ko00908,ko01110,ko04075
lysoPE 14:0(2n isomer) / 1.51 3.26 /
diosmetin-7-O-glucoside 20,126-59-4 1.49 3.05 /
1-O-cinnamoyl-B-D-glucose 40,004-96-4 1.50 2.79 /
jasmonic acid 77,026-92-7 154 279 ko00592,ko01100,ko01110,ko04075
p-coumaryl alcohol 3690-05-9 1.53 2.73 ko00940,ko01100,ko01110
N-trans-p-coumaroylputrescine 34,136-53-3 146 269 ko00330,ko01100
N-p-coumaroyl-N-feruloylputrescine 380,302-96-5 1.53 264 /
p-coumaroylcadaverine / 1.46 263 /
4-methoxyphenylpropionic acid / 1.53 261 /
indole-5-carboxylic acid 1670-81-1 1.54 2.57 /
coniferyl alcohol 458-35-5 153 257 ko00940,ko00998,ko01100,ko01110
apigenin-7,4-dimethyl ether 5128-44-9 1.53 2.55 /
N-cis-p-coumaroylhydroxyputrescine / 1.51 248 /
10-heptadecenoic acid 29,743-97-3 142 242 /
N-(4"-O-glycosyl)-p-coumaroyl agmatine / 143 242 /
naringenin 480-41-1 1.54 242 ko00941,ko00943 ko01100,ko01110
N-trans-p-coumaroylhydroxyputrescine / 1.50 241 /
5,2"-dihydroxy-7,8-dimethoxyflavone glycosides / 1.48 2.36 /
N-cis-p-coumaroylputrescine / 1.51 2.36 /
L-tartaric acid 87-69-4 1.14 228 ko00630,ko01100
acetryptine 3551-18-6 1.48 2.25 /
1-O-caffeoyl-(6-O-glucosyl)-B-D-glucose / 1.50 2.20 /
prunetin 552-59-0 1.54 218 ko00943
methyl linolenate 301-00-8 1.52 2.1 /
kaempferide-3-O-(6"-malonyl)glucoside / 1.52 21 /
rubusic acid 23,984-26-1 1.52 2.10 /
N-trans-p-coumaroylagmatine 7295-86-5 1.52 2.06 ko00330,ko01100
2-O-methyladenosine 2140-79-6 1.51 -2.09 /
feruloylhistamine 94,848-18-7 1.53 -2.39 /
neohesperidin 13,241-33-3 112 -344 ko00941

/ indicates no annotation to CAS or KEGG pathways
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not significantly differ between mycelia incubated on
DMSO-amended PDA media and those incubated on
normal PDA media, suggesting that 4% DMSO as a
solvent had no significant effect on the mycelial growth
rate (P>0.05) (Fig. 6B). In contrast, compared with
the DMSO-amended PDA media and PDA media, the
PABA-amended PDA media significantly suppressed the
growth of the mycelia (P<0.001) (Fig. 6A, B). Further-
more, the concentration of PABA was negatively corre-
lated with the growth rate of the pathogen mycelium but
positively correlated with the inhibition rate of myce-
lial growth, with inhibition rates of 25.4% ~31.4% and
42.87% ~52.48% at 0.4 mg/mL and 0.8 mg/mL between
different FHB strains, respectively (Fig. 6B, Table 2).
The effect of PABA on the ability of FHB strains to pro-
duce conidia was investigated by inoculating equivalent
quantities of discs into conidia-producing media supple-
mented with 0.1 mg/ml, 0.2 mg/ml, 0.4 mg/ml, or 0.8 mg/

ml PABA. Figure 6C shows that the concentration of
conidia decreased significantly with increasing concen-
tration of PABA, indicating that PABA was able to inhibit
the production of Fusarium spp. conidia. The antifungal
activity of PABA was further investigated in wheat by
comparing the percentage of scabbed spikelets between
wheat cultivars sprayed with H,O, DMSO or PABA after
inoculation (Fig. 6D and E). Spraying 2 mg/mL PABA did
not inhibit the infection, as it was clearly observed that all
wheat spikelets successfully infected and invaded neigh-
boring spikelets (Fig. 6E). The percentage of scabbed
spikelets of wheat sprayed with PABA was significantly
lower than that sprayed with H,O or DMSO (P<0.05),
averaging 30.67% ~57.99% and 29.54% ~55.89% lower,
respectively, across wheat cultivars. These results dem-
onstrated that PABA exhibited anti-FHB activity during
pathogen challenge.
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Discussion

E graminearum is one of the most widespread fun-
gal diseases of commercially essential crops, such as
wheat, barley and maize, and is capable of causing FHB
in wheat and barley and Giberella ear rot in maize (Bal-
cerzak et al, 2012). Given the limited understanding of
resistance mechanisms to combat FHB in wheat, the
identification of host resistance factors could assist in
the control of FHB. Metabolomics is a nonbiased, com-
prehensive and high-throughput method for analyzing
complex metabolic compounds that theoretically allows
the identification and quantification of every metabolite
(Gauthier et al., 2015). The number of identified metab-
olites related to FHB resistance depends on the genetic
background of the material and the analytical strategy,
for example, 340 metabolites based on wheat near iso-
genic lines in an LC-LTQ-Orbitrap study and 45 metabo-
lites based on six wheat cultivars/lines in a GC-MS study
(Gunnaiah et al., 2012; Hamzehzarghani et al., 2008). In
this study, metabolome profiling between E gramine-
arum inoculation and mock inoculation of Lianmail2, a
Chinese commercial wheat cultivar resistant to FHB, was
conducted by using UPLC-MS/MS technology. A total of
1001 compounds were detected following the inoculation
and mock inoculation. These metabolites were quanti-
fied and analyzed to investigate the potential defense
mechanisms of Lianmail2 in response to FHB disease.

0.4 06
Rich Factor

Our study showed that the plant hormone signal trans-
duction, the phenylpropanoid biosynthesis, and the fla-
vonoid biosynthesis pathways were significantly enriched
in Lianmail2 at 3 days post inoculation. Profiling of the
recombinant inbred lines carrying resistant and suscep-
tible alleles of QTL-Fhb2 revealed a higher abundance
of metabolites belonging to phenylpropanoid and flavo-
noid biosynthetic pathways in the resistant lines (Dho-
kane et al., 2016), which is consistent with the results of
our analysis. Metabolomic analysis of the resistant wheat
cultivar Sumai 3 also revealed the important role of plant
hormone signal transduction pathway and flavonoid met-
abolic pathways in limiting the spread of the pathogen
(Zhao et al., 2022).

Phytohormones are known to participate in plant
defense during biotic stress and to influence the sever-
ity of FHB in wheat (Alazem et al,, 2015; Qi et al., 2012;
Shigenaga et al., 2016). The phytohormone jasmonic acid
reportedly plays a positive role in the early infection of
E graminearum, whereas abscisic acid may be associated
with susceptibility to FHB (Qi et al., 2016; Su et al., 2021;
Sunic et al., 2023; Wang et al., 2018). TaAOC, TaAOS, and
TaOPR3, genes involved in the jasmonic acid pathway,
have been shown to positively regulate FHB resistance
(Fan et al., 2019). Exogenous jasmonic acid treatment of
wheat heads reduced the growth of E graminearum and
FHB symptoms, in contrast to abscisic acid treatment,
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Fig. 6 The effects of PABA on the growth of FHB strains. A Suppression of the mycelia in vitro by PABA at 3 days. The rings marked on the plates
indicate the edge of hyphal growth every 24 h. PDA and DMSO mean that the strain was cultured on the potato dextrose agar medium

and the DMSO-amended potato dextrose agar medium, respectively. B Inhibition rate of the mycelial growth by PABA at 3 days. PDA

and DMSO mean that the strain was cultured on the potato dextrose agar medium and the DMSO-amended potato dextrose agar medium,
respectively. C Effect of PABA on conidia production at 48 h. MBB and DMSO mean that the strain was cultured on the mung bean broth

medium and the DMSO-amended mung bean broth medium, respectively. D The percentage of scabbed spikelets of different cultivars

after the application of exogenous PABA at 21 days post inoculation. H,O, DMSO and PABA represent the control groups sprayed with H,O or DMSO,
and the experimental groups sprayed with PABA, respectively. E Exogenous spraying of PABA reduces FHB disease phenotype in wheat cultivars
Huaimai33 and Lianmai7. H,O, DMSO and PABA represent the control groups sprayed with H,O or DMSO, and the experimental groups sprayed
with PABA, respectively. The results are presented as the means = SD. Asterisks indicate statistical significance. *** indicates P<0.001, ** indicates

P<0.01, * indicates P<0.05, ns indicates no significance (P>0.05)

which was found to increase FHB symptoms (Qi et al.,
2016). Additionally, Fusarium spp. can hijack phytohor-
mones, such as abscisic acid, to establish or promote
infection (Buhrow et al., 2021). These studies support
our experimental results. In our metabolomic study, the
plant hormone signal transduction pathway was the most

enriched KEGG pathway. Jasmonic acid was upregulated
6.92-fold, and its bioactive conjugate (-)-jasmonoyl-
L-isoleucine was upregulated 2.77-fold at 3 days post
inoculation. Moreover, abscisic acid did not change sig-
nificantly, which may be one of the bases of resistance in
wheat cultivar Lianmail2.
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Table 2 Correlation analysis of the anti-FHB activity of PABA in vitro
FHB Correlation PABA Average colony diameter Average growth Average
Strains concentration rate of mycelium inhibition
24h 48h 72h rate
19JAFG PABA concentration 1.000 -0.995** -0.996** -0.989** -0.988** 0.989**
Average colony diameter at 24 h 1.000 0.998** 0.997** 0.996** -0.997**
Average colony diameter at 48 h 1.000 0.998** 0.998** -0.998**
Average colony diameter at 72 h 1.000 1.000** -1.000%*
Average growth rate of mycelium 1.000 -1.000%*
Average inhibition rate 1.000
1312 PABA concentration 1.000 -0.974** -0.985** -0.989** -0.9971** 0.989**
Average colony diameter at 24 h 1.000 0.994** 0.995** 0.994** -0.994**
Average colony diameter at 48 h 1.000 0.998** 0.998** -0.998**
Average colony diameter at 72 h 1.000 1.000%* -1.000%*
Average growth rate of mycelium 1.000 -1.000%*
Average inhibition rate 1.000
0301 PABA concentration 1.000 -0.953** -0.981** -0.989** -0.989** 0.989**
Average colony diameter at 24 h 1.000 0.993** 0.986** 0.985** -0.986**
Average colony diameter at 48 h 1.000 0.997%* 0.996** -0.997**
Average colony diameter at 72 h 1.000 1.000%* -1.000**
Average growth rate of mycelium 1.000 -1.000%*
Average inhibition rate 1.000

" means P<0.01, * means P<0.05

Plant metabolites provide chemical defense not only by
inducing specific defense signaling pathways but also by
exerting antimicrobial activity and reinforcing cell walls.
The phenylpropanoid biosynthesis pathway, which was
enriched in the highest number of DAMs in Lianmail2
after infection, activates the synthesis of phenolic phyto-
alexin in crops (Cho et al.,, 2015). Phytogenous phenolic
acids (such as caffeic acid (Lima et al., 2016; Yuvamoto
et al., 2007) and ferulic acid (Yan et al., 2023), flavonoids
(such as prunetin (Kuete et al., 2011; Wabo et al., 2007),
sakuranetin (Grecco et al.,, 2014; Hasegawa et al., 2014;
Liu et al,, 2023) and prunin (Salas et al., 2012), and alka-
loids (such as putrescine (Song et al., 2023), tryptamine
(Gardiner et al.,, 2013) and serotonin (Du Fall et al., 2013)
have been reported to exhibit antimicrobial activity
directly. Yan et al. (2023) reported that ferulic acid treat-
ment inhibited the synthesis of ergosterol in E gramine-
arum and impaired the cell membrane of hyphae. Patzke
et al. (2018) found that ferulic acid was very effective in
inhibiting the growth of Botrytis cinerea and that suppres-
sion of infection in wounded and contaminated grapes
was achieved by adjusting the concentration of ferulic
acid in the phenolic emulsion. Li et al. (2021) suggest that
caffeic acid has a crucial role in defense against Ralsto-
nia solanacearum infection in tobacco and is a potential
and effective antibacterial agent for the control of bacte-
rial wilt. According to Sidiq et al. (2021), nicotinamide

is an effective candidate for controlling FHB disease. It
suppressed fungal cell growth and mycotoxin produc-
tion in wheat and barley. After E graminearum infection,
metabolites with antimicrobial properties also increased
in spikelets of Lianmail2. We identified 18 antimicrobial
compounds among the DAMs, 16 of which were upregu-
lated. The evidence suggests that these metabolites may
have antifungal effects on resistance to FHB in the wheat
cultivar Lianmail2. However, further studies on the pro-
cess of wheat-fungal interactions and the mechanisms by
which pathogens escape from the wheat defense system
are needed because several host-generated defense com-
pounds, such as ferulic acid and putrescine, may induce
the hypertranscription of deoxynivalenol biosynthetic
genes and subsequently lead to deoxynivalenol accumu-
lation (Gardiner et al., 2010; Ma et al., 2021; Ponts et al.,,
2011). The application of natural products and plant
extracts as safer antimicrobials against plant pathogens
has become an increasingly popular topic in agriculture.
Feng et al. (2023) developed cinnamaldehyde nanoemul-
sions, which overcame the negative characteristics of cin-
namaldehyde such as high volatility, poor water solubility
and easy oxidative degradation, and showed good effi-
cacy against rice sheath blight, wheat sheath blight, and
wheat take-all diseases with good biosafety. Plant Tonic9
(EOX-SOV; Sovereign Innovations Sdn Bhd, Malaysia in
collaboration with EOX International b.v. Netherlands),
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contains palm oil and palm kernel oil with lauric acid, has
good antifungal activity and protective properties against
rice blast disease (Abed-Ashtiania et al.,, 2018; Walters
et al,, 2003).

Lignin biosynthesis is an off-shoot process of the phe-
nylpropanoid pathway in plants (Ninkuu et al., 2023).
The precursor compounds related to lignin biosynthesis,
including p-coumaraldehyde, p-coumaryl alcohol, caffeic
acid, coniferyl alcohol, ferulic acid, and coniferin (Boerjan
et al,, 2003; Kumar et al,, 2020), all increased after FHB
infection. Studies have demonstrated that cultivar resist-
ance to FHB in wheat depends on biochemical factors
that limit the spread of the pathogen in spikes and that
the combination of cell wall components and lignification
are critical for the mechanism of FHB type II resistance
(Lahlali et al., 2016; Lionetti et al., 2015). Based on these
findings, it is hypothesized that the limited bleaching
symptoms observed on the Lianmail2 rachis after infec-
tion may be due to the strengthening of cell wall defenses
that prevent or slow the spread of the pathogen.

During the metabolic profiling of Lianmail2, we paid
particular attention to the elevated trend of PABA after
infection, which is an environmentally friendly bioactive
metabolite that has shown antifungal activity based on
the ability to inhibit cytokinesis and antibacterial activ-
ity by altering outer membrane integrity (Jiang et al,
2023). Studies have proven that PABA, found in the
secretion of Lysobacter antibioticus, has stable broad-
spectrum antifungal activity in pears, which significantly
reduces the symptoms of bitter rot disease (Laborda
et al,, 2019; Zhu et al., 2022). Goodwin et al. (2018) found
that PABA affected salicylic acid-related gene expression
and induced resistance against Pseudomonas syringae in
tomato. Jiang et al. (2023) reported that PABA exhibited
antibacterial activity against the soybean pathogen Xan-
thomonas axonopodis pv. glycines by reducing the expres-
sion of several membrane integrity-related genes and the
content of membrane lipopolysaccharides. Nevertheless,
studies on the resistance of PABA to Fusarium spp. in
wheat are still to be conducted. To investigate whether
PABA has a protective effect against FHB in wheat, we
first verified its direct antifungal activity in vitro. Con-
sistent with the above findings, our results showed that
PABA inhibited mycelial growth and conidial produc-
tion of Fusarium spp. in vitro. Further field trials showed
that PABA protected wheat from FHB disease and sig-
nificantly reduced the percentage of scabbed spikelets
in resistant and susceptible cultivars. As PABA and its
derivatives are widely used in the pharmaceutical indus-
try, for example in sunscreens, PABA and its metabo-
lites are almost exclusively excreted in the urine and are
generally considered to be non-toxic and well-tolerated
(Kratky et al., 2020; Sowinska et al., 2019). This offers
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the potential for research into the development of novel
PABA-based biocontrol agents, although the environ-
mental safety of PABA needs to be further investigated.

Conclusions

In summary, we conducted a comprehensive analysis
of the metabolic profiles of Lianmail2, an FHB-resist-
ant commercial wheat cultivar in China, during early
infection. Our study revealed the key roles of the plant
hormone signal transduction pathway and the phenyl-
propanoid biosynthesis pathway in the FHB resistance
process. In particular, we demonstrated not only the anti-
FHB activity of PABA, but also the protective effect of
PABA against FHB disease in wheat for the first time. In
the future, we will further investigate the mechanisms of
PABA against FHB and explore the possibility of PABA-
based bioagents in agriculture. We hope to provide a the-
oretical basis for the application of PABA and contribute
to the development of new biopesticides with high effi-
cacy, safety and environmental friendliness against FHB.
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