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Abstract 

Recently, fermented mushrooms are widely consumed worldwide owing to their nutritional, sensory, and health-
promoting properties. The edible mushrooms are used as food and food flavoring due to their complex pleasant 
taste and aroma. Four well-known and most commonly included edible mushroom species are Ganoderma lucidum, 
Morchella esculenta, Lentinula edodes and Hericium erinaceus. Several studies have demonstrated that bioactive com-
pounds from mushrooms exert remarkable biological activities, however, they have low oral bioavailability, restricting 
their therapeutic application. Fermentation is a method of preserving and transforming raw mushrooms into high-
quality, value-added products by utilizing the technology of microorganisms and enzymes. This study provides 
a multifaceted review on mushroom fermentation from several perspectives including: 1) Different types of fermen-
tation employed in commercial mushroom preparation including lactic acid and enzyme fermentation. 2) Produc-
tion conditions, fermented mushroom in the market, and associated biochemical changes in fermented mushroom 
products. 3) Fermentation effect on bioavailability, sensory, and nutritional value of fermented mushrooms. 4) Safety 
concerns and health prospects of available fermented mushroom products and their health benefits were also intro-
duced herein.

Keywords Fermentation, Fermented mushroom, Lactic acid fermentation, Sensory attributes, Health value

*Correspondence:
Mohamed A. Farag
mohamed.farag@pharma.cu.edu.eg
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43014-024-00278-w&domain=pdf


Page 2 of 13Farag et al. Food Production, Processing and Nutrition             (2025) 7:8 

Graphical Abstract

Introduction
Fermented foods are widely consumed worldwide not 
only due to the low cost but also provide myriad health 
benefits well beyond the original food materials (Marco 
et  al., 2017). Food fermentation is a well-adopted 
method suited for food preservation and processing. 
Bacterial lactic acid fermentation is the most com-
mon fermentation pathway that yields several food 
products, especially mushrooms, with high durability 
and flavor without chemical or thermal preservation 
(Marco et  al., 2017). Furthermore, nutrient bioavail-
ability can be improved due to preliminary digestion 
by bacterial enzymes during the fermentation process. 
Concurrently, the fermentation process counteracts the 
anti-nutritive or even toxic effects that can arise dur-
ing mushroom processing. Several raw materials are 
exposed to lactic acid fermentation, which provides 
food products with high nutritional value. Lactic fer-
mentation process is commonly used worldwide to 
preserve different food products, especially dairy prod-
ucts. The use of selected lactic acid bacterial strains 
guarantees a repeatable course of the process and leads 
to a product with high sensory quality (Jabłońska‐Ryś, 
Skrzypczak, Sławińska, Radzki, & Gustaw, 2019a). 
Additionally, the fermentation process improves health 
outcomes such as anti-oxidative properties because 
of the presence of viable cells of lactic acid bacteria 
(Jabłońska‐Ryś, Skrzypczak, Sławińska, Radzki, & Gus-
taw, 2019b) and presenting an added-value aside from 
preservation and improving sensory attributes. The lac-
tic acid bacteria (LAB) group and Bifidobacteriaceae 
are the main probiotic source that contribute to the 
prevention of several diseases (Castellone et al., 2021). 
Owing to such myriad benefits, fermented food is now 
known as a high-quality dietary supplement besides 
daily consumed food. Hence, fermentation not only can 
preserve food, extend shelf life, and improve sensory 

attributes but enhance health outcomes. Such posi-
tive health benefits are largely attributed to active pep-
tides produced by bacteria during fermentation using 
enzymes such as  proteinase and peptidase, as well as 
certain non-nutrients (Şanlier, Gökcen, Sezgin, & nutri-
tion, 2019). Such enzymes are widely produced natu-
rally by certain living organisms namely animals, plants, 
and microbes including transferases, oxidoreductases, 
lyases, hydrolases, ligases, isomerases, and translocases 
(Jeske et  al., 2019). Indeed, plant and animal sources 
are limited to fit industrial enzyme demands, micro-
bial enzyme synthesis is more efficient, cost-effective, 
scalable, and genetically manipulable (Nunes & Kumar, 
2018). As a result of their higher capacity to synthesize 
a large variety of extracellular enzymes required for the 
bioconversion of a wide range of substrates and com-
plexes, Lactobacillus spp., Streptococcus spp. and Asper-
gillus spp. are widely involved in fermentation process 
(Berbee et al., 2017).

Among the most important functional foods, edible 
mushrooms are widely consumed worldwide in many 
culinary recipes due to their nutritional value as meat 
protein substitutes. Recently, Submerged cultivation is 
effective in growing a wide variety of edible mushroom 
strains with higher yield of biomass and bioactive sub-
stances, including enzymes, lipids, carbohydrates, and 
proteins (Perveen et al., 2023). The most cultivated edible 
mushrooms in the world are Lentinula edodes (shiitake), 
Flammulina velutipes (enoki), Agaricus bisporus (button 
mushroom), Pleurotus species (oyster mushroom), and 
Auricularia species (wood ear mushroom). Such edible 
mushrooms produce a wide range of metabolites of great 
interest to human health and pharmaceutical industries 
(Bains et  al., 2021; Yolande et  al., 2023). Genus Pleuro-
tus produces secondary metabolites such as lovastatin 
with hypocholesterolemic effects, which have been iso-
lated from both the mycelia and fruiting bodies of oyster 
mushrooms and improved by the addition of methionine 
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(Yolande et al., 2023). To grow vegetative mycelium and 
reach the reproductive stage (fructification), it should be 
supplemented with nutrients as mushrooms are known 
as heterotrophic organisms (Das et al., 2021). Being with 
short shelf-life and prone to spoilage, fermentation pro-
cesses are well adopted to preserve mushrooms from 
microbial spoilage, increase shelf-life, and enhance their 
nutritional, sensory, and culinary values (Nurerk, Junden, 
& Research, 2022). This review aims to present a multi-
faceted overview on the role of microorganisms and asso-
ciated enzymes on sensory attributes and preservation of 
fermented mushrooms. The production conditions and 
the major biochemical changes in fermented mushroom 
products are also mentioned herein to introduce the best 
factors influencing fermented product quality. Moreo-
ver, health benefits and safety concerns are summarized 
highlighting needs for future perspectives of fermented 
mushroom research for better capitalization in the food 
supply chain.

Mushroom processing prior to fermentation
Prior to fermentation, edible mushrooms are subjected 
to processing through three important steps including 
washing, blanching, and cutting, Fig.  1. However, each 
step has its significance to affect mushroom sensory and 
chemical attributes.

Washing
Washing removes dirt and compost remains from mush-
room cultivation. However, washing with water alone 
induces osmosis and ruptures the delicate cell membrane 
in the pilei of the mushroom which causes mushroom 
browning due to peroxidases enzyme release during 
the washing process. To overcome the browning effect, 
addition of salts and other chemicals such as hydrogen 

peroxide, sodium isoascorbate, disodium metabisulphite, 
and sodium EDTA are suggested with minimal loss of sol-
uble polyphenols with increasing mushroom nutritional 
value and health benefits (Bernaś et al., 2006). However, 
mushroom shelf-life is still limited with just washing as 
the peroxidase enzyme is still active and affects mush-
room’s nutritional value. Moreover, mushrooms are sus-
ceptible to infection from fungus and bacteria warranting 
for a sterilization step termed blanching.

Blanching and cutting
Blanching is a process in which mushrooms are placed in 
boiling water then cooled or freeze for a certain period. 
Blanching is done to inactivate enzymes that can lead to 
losses of mushroom nutritional value such as gluconase 
and polyphenol oxidase enzymes that are responsible for 
browning and reduction of sugar, protein levels in mush-
rooms (Jabłońska-Ryś et al., 2019a, 2019b, 2019c, 2019d). 
Blanching in water or brine proved to reduce mushroom 
weight by 30–40% and contributes to significant loss 
of several nutrients owing to reduction of glucose and 
total protein content. An improvement to this method 
is made by microwaving or even baking in a hot oven to 
reduce the hardening texture that occurs during blanch-
ing. Mushroom hardening can be related to the air pock-
ets inside the mushroom released during the blanching 
process and replaced by the tissue (Jabłońska-Ryś et al., 
2019a, 2019b, 2019c, 2019d). Although this process is 
often associated with a reduction in nutritional value, it 
can be remedied by using other chemicals such as cit-
ric acid, ascorbic acid, and potassium or sodium meta-
bisulfite (Lespinard et  al., 2009). The concentration of 
lovastatin, a cholesterol-lowering drug produced in the 
fruiting bodies of Pleurotus ostreatus grown on corn cobs 
significantly reduced by the blanching process (Mobou, 

Fig. 1 Mushroom processing steps prior to lactic acid or enzymatic fermentation
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Yadang, Begoude, Nkoue, & Kamdem, 2022). Further 
cutting processing including removal of unwanted stems 
and separation of mushroom caps which are pickled as 
a whole or fragmented into slices prior to fermentation 
(Jabłońska-Ryś et  al., 2016). Trials of preprocessing are 
summarized with benefits and shortcomings in Table 1.

Fermentation as a method for improving functional 
properties
Fermented mushroom have several positive health 
outcomes, including antioxidant, anticancer, and anti-
inflammatory, enhanced gastrointestinal health, and a 
decreased risk of metabolic disorders (Sivamaruthi et al., 
2018), Fig. 2. Most fermented products have been shown 
to encompass at least  106 microbial cells per gram, with 
quantities changing based on the region, age, and time 
of analysis and consumption of the product (Rezac, Kok, 
Heermann, & Hutkins, 2018). Among microbial taxa, 
probiotic strains play a pivotal role in normalization of 
the gut microbiota, defense against pathogen coloniza-
tion, generation of short-chain fatty acids, or metabo-
lism of bile acid salts (Skowron et al., 2022). Such effects 
of probiotics is beneficial in the treatment of several ail-
ments viz., obesity, lactose intolerance, diabetes, osteo-
porosis, and cardiovascular disorders, as well as intestinal 
diseases (Baky, Elshahed, Wessjohann, & Farag, 2022).

As oxidative damage is responsible for the incidence of 
several health concerns, production of antioxidant mol-
ecules through fermentation may lower the risk of devel-
oping such ailments. Fermentation by role can enhance 
the antioxidant capacity of fermented products as a result 
of the production of several beneficial phytochemicals, 
antioxidant polysaccharides, phenolic compounds, vita-
mins, protein derivatives, and antioxidant peptides by 
microbial hydrolysis (Zhao et al., 2021). Moreover, bioac-
tive peptides have been shown to exert immunostimulant, 
anti-microbial, anti-hypertensive, and angiotensin-I-con-
verting enzyme (ACE) inhibitory activities. These pro-
tein-derived peptides have anticancer qualities by halting 
various phases of cancer, and LAB appears to possess 
anticancer properties as well (Rai, Jeyaram, & beverages, 
2015). By altering the intestinal environment, which low-
ers the population or metabolic activity of bacteria that 
can produce carcinogenic compounds, removing carcin-
ogens, and synthesizing the product of metabolism like 
butyrate, which increases the ability to undergo apoptosis, 
among other methods (Saxami et al., 2017).

Disruption of the gut microbiota may harm the 
immune system and leads to inflammation (Shahbazi 
et  al., 2020). Through a variety of mechanisms, includ-
ing the inhibition of pathogen colonization, the induction 
of antimicrobial peptides production and mucus secre-
tion, the increase of IgA production, the downregulation 

of the Th17 and pro-inflammatory cytokines like IL-17F 
and IL-23, and the up-regulation of Tregs, probiotic con-
sumption in the form of fermented foods can improve gut 
barrier integrity, gut immunity, and maintain gut homeo-
stasis (Shahbazi et al., 2020). Recent studies reported that 
polyphenolics in fermented mushroom can promote the 
growth and metabolism of the microbiota, as well as their 
ability to reduce inflammatory cytokine production and 
suppress inflammatory reactions (Shahbazi et  al., 2021). 
Fermented mushroom can also be effective delivery sys-
tems for probiotic strains to safely enter the gut since 
some microbial strains in food are able to survive diges-
tion (Heinen et al., 2020).

Potential industrial applications of fermented mushrooms
Mushroom fermentation can vary in the context of sev-
eral parameters including bacterial type, temperature, 
and solution type. The first principle in mushroom fer-
mentation lies in exploiting carbohydrates, the most 
abundant component in most mushroom including gly-
cogen, chitin, and glucans, trehalose and xylans, as raw 
material to digest them using lactic acid fermentation 
(Jabłońska-Ryś et  al., 2019a, 2019b, 2019c, 2019d). The 
enzyme produced by lactic acid is α-galactosidase which 
degrade carbohydrates into galactose and sucrose, and 
sucrose can further be broken down into glucose and 
fructose. Additionally, proteins are the second abundant 
nutrient in mushroom which upon fermentation are 
denatured owing to enzymatic break down of proteins, 
and nucleic acids producing biogenic amines, which 
can survive after blanching (Jabłońska-Ryś et  al., 2019a, 
2019b, 2019c, 2019d). Consequently, the second prin-
ciple for fermenting mushrooms is to destabilize these 
enzymes via salting, or lactic acid producing bacteria 
and afterward the time of their storage can vary from 4 
weeks up to 6 months (Jabłońska-Ryś et al., 2019a, 2019b, 
2019c, 2019d). Examples of lactic acid and brine fermen-
tations with their advantages and any limitations were 
listed in Table 1.

Not only does the fermentation process rely on bacte-
rial count, and brine, but rather on other herbs and spices 
that can be added during the fermentation process. Of 
these ingredients that are commonly used are black pep-
per, basel leaves, chopped onions (Jabłońska-Ryś et  al., 
2016). Of these spice combinations each has its own 
taste and flavor that is added as well as beneficial to the 
fermented product (Jabłońska-Ryś et  al., 2019a, 2019b, 
2019c, 2019d). These spices can be unique according to 
consumers preferences suggestive for the need to test sev-
eral spice combinations to determine best combinations 
that are favorable for consumption (Zheng et al., 2018).

Functional food with a combination of prebiotics and 
probiotics is required to maintain a healthy body and 
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gut bacterial homeostasis (Tupamahu & Budiarso, 2017). 
White oyster mushroom powder was employed as a 
prebiotic agent in yoghurt fermentation products to pro-
vide a combination of prebiotics and probiotics. The white 
oyster mushroom or Pleurotus ostreatus is further used 
as an additive in yoghurt fermentation alongside LABs 
such as Lactobacillus bulgaricus and Streptococcus ther-
mophilus. The fermented yoghurt with oyster mushroom 
powder resulted in a more sour flavor with the addition of 
LAB as expectedly (Tupamahu & Budiarso, 2017).

Research by Giang et  al. (2022) demonstrated the 
growth and production of amylase and protease enzymes 
by Aspergillus oryzae that hydrolyze complex compo-
nents from oyster mushrooms koji or Pleurotus spp. 
(Giang, Van Khai, Thuy, & Biotechnology, 2022). A. ory-
zae (Koji) was used as a starter during the initial stage in 
the fermentation of soy sauce production process (Kim 
et  al. 2017). Moreover, amylase and protease were used 
to convert starch and proteins into sugars and amino 
acids producing a sweet sauce. To obtain the maximum 
enzyme activity for oyster mushrooms koji, Giang et  al. 
suggested that best conditions were at 0.03% mould, pH 
6.0, and incubation at 30 °C for 30 h (Giang et al., 2022).

The food waste and spent mushroom substance (SMS) 
co-fermentation to produce lactic acid was studied by 
Wei et al. (2020) replacing commercial cellulase with A. 
niger cellulase. SMS is a common lignocellulose left over 
waste after mushroom harvest (Wei et al., 2020). Accord-
ing to Hřebečková et  al. (2020), SMS is rich in polysac-
charide, minerals, protein, and active compounds besides 
cellulose and hemicellulose which is suitable to be used 

as a substrate for biological fermentation (Hřebečková, 
Wiesnerová, & Hanč, 2020). However, when SMS is uti-
lized as a biological feedstock, cellulase must be added 
to the fermentation process to catalyze cellulose and 
hemicellulose of SMS into fermentable sugars (Ma et al., 
2021). At 24  h post addition of A. niger cellulase to the 
co-fermentation system, the highest lactic acid concen-
tration and yield was at 48.72  g/L and 0.91  g LA/g TS, 
respectively, which were 22.9 and 21.3% higher than the 
control group with commercial cellulase (Ma et al., 2021). 
The essential microbial enzymes and its sources yielded 
from mushroom fermentation, and it is role in industrial 
production is summarized in Table 2 & Fig. 3.

Fermentation as a tool for improving metabolism 
and digestion of mushrooms
The mushroom fermentation process can occur in the 
form of fruiting bodies and/or mycelium through two 
methods; solid state fermentation (SSF) or submerged 
fermentation (SMF) (Lübeck & Lübeck, 2022). SSF pro-
cess involves the growth of microorganisms, metabolism, 
and end products recovery on moist, solid substrates 
without free-flowing water. Meanwhile, SMF process 
includes the cultivation of microorganisms, metabolic 
process, and recovery of end products carried in liquid 
substrates that consist of nutrients under controlled con-
ditions. This process contributes to higher yields con-
current with improved productivity (Bakratsas et  al., 
2023). Consequently, SMF is commonly applied in sev-
eral industries as this process has better control meas-
ures under both sterile and non-sterile conditions. A 

Fig. 2 Health benefits of fermented mushroom products and improved food quality
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comparison between SMF and SSF revealed that the 
production results of certain fungal strains perform bet-
ter in SMF, while some fungal strains perform better in 
SSF (Lübeck & Lübeck, 2022). Therefore, the choice of 
fermentation process should be considered during the 

production of fermented mushrooms, including the 
selection of the methods that should be appropriate 
based on the targeted fungal strain.

Various parameters such as pH value, oxygen level, tem-
perature, mass transfer, and distribution of nutrients can 

Table 2 Essential mushroom microbial enzymes involved in the production of other fermentation products

Mushroom Type/ Species Enzymes Microbial Source Enzymatic Action/ Process Reference

Schizophyllum commune Lactate dehydrogenase Lactobacillus
Streptococcus

Fermentation to produce a cheese-
like food that contains 0.58% P-D-
glucan, to exert chemopreventive 
effects against cancer

(Okamura-Matsui et al., 2001)

Pleurotus ostreatus α-Galactosidase Lactobacillus acidophilus Enzyme degrade carbohydrates 
into galactose and sucrose, 
and sucrose can further be broken 
down into glucose and fructose

(Tupamahu & Budiarso, 2017)

Pleurotus spp. Amylase
protease

Aspergillus oryzae Enzyme break down starch and pro-
teins into sugars and amino acids 
to produce sweet sauce

(Giang et al., 2022)

Spent mushroom substance Cellulase Aspergillus
niger

Enzyme cellulase added to the fer-
mentation process to catalyze 
the cellulose and hemicellulose 
of SMS into fermentable sugars

(Ma et al., 2021)

Fig. 3 Industrial application of mushroom microbial enzymes used in mushroom production and action mechanisms
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be modified and controlled continuously during the fer-
mentation process. Dynamic alterations in pH and levels 
of free sugars, organic acids, and lactic acid bacteria in 
mushrooms during fermentation may influence the qual-
ity, stability, and safety of the fermented mushroom prod-
ucts (Jabłońska-Ryś et  al., 2022). The pH value usually 
decreases during the fermentation process because of the 
generation of organic acids, mainly lactic acid released by 
LAB into the medium during lactic fermentation process. 
For example, pH value in fully fermented mushrooms was 
lower (3.55 ± 0.03) in L. plantarum EK3-fermented variant 
compared to mushrooms fermented using L. plantarum 
299v (3.68 ± 0.03) (Jabłońska-Ryś et al., 2022). In other fer-
mented mushroom species, pH value has been reported 
within the range of 3.3 to 4.6, depending on other factors 
such as fermentation temperature, the number of available 
carbohydrates, or additives utilized during fermentation 
process (Jabłońska‐Ryś, Skrzypczak, Sławińska, Radzki, 
Gustaw, et al., 2019a). The lower pH value ensures stability 
of fermented mushrooms with simultaneous maintenance 
of anaerobic conditions (Jabłońska-Ryś et al., 2022).

On account of their richness in proteins, mushrooms 
became an alternative protein source instead of the ani-
mal-derived protein (Sexton et  al., 2019). However, several 
parameters should be considered during the production of 
fermented mushrooms such as the ability of the human gas-
trointestinal tract to hydrolyze proteins and the rate of free 
amino acids absorption into the bloodstream. Mushroom 
fermentation typically increases protein digestibility which 
is dependent on the protein material solubility, presence of 
anti-nutrients including phytic acid and protease inhibitors 
(Afify, El-Sawah, Ali, El-Rahman, & Biotechnology, 2012). 
During digestion, phytic acid acts as a powerful chelating 
agent that interferes with the absorption of important miner-
als such as iron, calcium, zinc, and magnesium in the gastro-
intestinal tract (A. J. Clark, B. K. Soni, B. Sharkey, T. Acree, 
E. Lavin, H. M. Bailey, H. H. Stein, A. Han, M. Elie, & M. J. 
L. Nadal, 2022). Meanwhile, phytases, enzymes responsible 
for hydrolyzing phytic acid into inositol and phosphate are 
distributed widely among fungi including shiitake mush-
room (Jatuwong et  al., 2020). Shiitake mushroom secreted 
proteases might break down protein substrate first before 
reaching the digestive system and improve protein digestibil-
ity. The increased solubility of the fermented protein, espe-
cially at a low pH value may be attributed to the increased 
digestibility in fermented mushroom compared to raw type. 
Furthermore, phytate level decreases during fungal fermen-
tation process concurrent with increased protein digestibil-
ity. The degradation of anti-nutrient papain inhibitor protein 
during sterilization process could partially contribute to the 
reduced enzyme inhibition in fermented protein blend (A. J. 
Clark, B. K. Soni, B. Sharkey, T. Acree, E. Lavin, H. M. Bailey, 
H. H. Stein, A. Han, M. Elie, & M. Nadal, 2022).

Effect of mushroom fermentation on sensory attributes, 
organoleptic characteristics, and nutritional value
Sensory and organoleptic attributes are important param-
eters which affect consumer demand for plant-derived pro-
teins. One of the main obstacles in producing mushrooms 
lies in how to enhance their organoleptic characteristics. 
The fermentation process contributes to a reduction in off-
note compounds in fermented blends eventually enhancing 
its organoleptic features (A. J. Clark, B. K. Soni, B. Sharkey, 
T. Acree, E. Lavin, H. M. Bailey, H. H. Stein, A. Han, M. 
Elie, & M. Nadal, 2022). For example, a fermented mush-
room known as Nham Hed is one of the famous appetizers 
in Thailand. Nham Hed is produced by a mixture of minced 
mushroom, glutinous rice, sugar, garlic, and salt, and 
then, wrapped in a bundle to allow the fermentation pro-
cess until the taste becomes sour (Tangsombatvichit et al., 
2021). LAB plays a role in enhancing the sensory charac-
ters of fermented mushrooms by producing organic acids 
from carbohydrates (Jabłońska-Ryś et al., 2022). Staphylo-
coccus aureus further attributes to flavor formation and is 
known as the source of lipolytic and proteolytic enzymes 
(Nurerk et al., 2022). The addition of pigmented rice to fer-
mented mushrooms is an alternative approach to improve 
taste and palatability of fermented mushroom and adding 
to its nutritional value (Nakaew & Sungthong 2018). Lactic 
acid fermentation of Agaricus bisporus (white and brown) 
revealed characteristic changes including lower pH, light-
ness, redness, and yellowness than non-fermented ones, 
higher acceptability, and higher emotions induced for con-
sumers (Bartkiene et al., 2023).

A sensory evaluation test between fermented mush-
room mixed with three different types of glutinous rice 
such as black glutinous rice, Riceberry, and Rai Dok Kha 
rice demonstrated that black glutinous fermented mush-
room was the most favored with regards to all sensory 
characteristics with the score ranging from 7.47 to 8.30 
towing for its likable smell and texture (Nurerk et  al., 
2022). Meanwhile, the score for fermented mushroom 
mixed with Riceberry rice and Rai Dok Kha rice were 
much lower, within the range of 6.30 to 7.0, and 6.17 to 
6.7, respectively. The abundance of amylopectin in black 
glutinous rice contributed for the slower decomposition 
rate of the fermentation process, producing a better smell 
and texture, thus, becoming the most favorite ingredient 
when mixed with fermented mushroom (Nurerk et  al., 
2022). The duration of storage may also affect the physi-
cal and chemical properties of fermented mushroom 
such as color change, decreased pH value, and reduced 
anthocyanin content (Nurerk et al., 2022).

Owing to pretreatment stages i.e., washing and blanch-
ing, fermentation significantly reduces the brightness and 
affects the color of mushroom fruiting bodies. Mushroom 
lactic fermentation stabilizes brightness, significantly 
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reduce redness parameter, and increases the yellow-
ness parameter (Jabłońska-Ryś et  al., 2016). Moreover, 
blanched mushrooms are subjected to 9–26% loss of their 
brightness during fermentation. Such changes in mush-
room brightness can be perceived by the consumers as 
loss of quality and hence affect consumer demand (Erbay 
et al., 2011). Moreover, adding certain spices to fermented 
mushrooms can affect the color, taste and odor of mush-
room product (Jabłońska-Ryś et  al., 2016). Additionally, 
adding aqueous onion extract enhance lightening of the 
color by deactivating enzymatic browning of Agaricus 
bisporus fruiting bodies and add to its nutritional value 
(Bernaś & Jaworska, 2015). Color analysis of fermented 
oyster mushrooms within 18 days fermentation revealed 
a systematic decrease in brightness by shifting to the 
dark color by the reason of enzymatic and nonenzymatic 
browning (Liu et al., 2016a). Moreover, the sensory char-
acteristics of fermented mushroom such as appearance, 
taste, texture, and general acceptance were evaluated and 
Pleurotus spp., P. cornucopiae obtained the highest sen-
sory characteristics (Jabłońska‐Ryś, Skrzypczak, et  al., 
2019a). In comparison to the first fermentation day, the 
crude protein (CP) concentration and total calories on the 
last fermentation days were significantly higher (P < 0.05) 
(Chu et  al., 2012). Compared to the fermentation of 
mushroom by LAB, attempts using yeast (Sacchromyces 
cerevisiae) showed likewise improvement in palatability. 
Shinekhuu et al. (2009) suggestive that yeast fermentation 
can improve the palatability of mushroom by-products 
for pigs (Shinekhuu et al., 2009). Furthermore, when com-
pared to the first day in fermentation, CP concentration 
and total calorie value were higher towards the end of the 
experiment and in agreement with (Chu et al., 2012).

Available fermented mushroom products and their health 
benefits
Shiitake mushroom
Shiitake mushroom is known for its high fiber content, vita-
min B complex, and minerals. Pure shiitake exhibit antibac-
terial, antifungal, anticancer effects along with improving 
immunity (Gaitán-Hernández, López-Peña, Esqueda, & 
Gutiérrez, 2019). Fermentation of Shiitake mycelium fur-
ther improves its functionality, digestibility, and nutritional 
value; protein solubility is increased by fermentation along 
with decrease of anti-nutrient molecules such phytates and 
protease inhibitors (A. Clark et al., 2022). Fermented Yama-
bushitake (Hericium erinaceus) is one of the most popular 
mushrooms that is widely consumed for both nutritional 
value and medicinal purposes (Chutimanukul et al., 2023). 
Lactobacillus plantarum was used for fermentation of shii-
take mushrooms (Lentinus edodes) providing the strongest 
umami flavor (Chen et al., 2021).

Chaga mushroom
The effect of fermented Chaga fungus on lipid profile and 
liver marker enzymes was studied in diabetic rats, (Fig. 4) 
via comparing effects of fermented Chaga diet to that of 
nondiabetic age-matched control group. Serum triglyc-
erides were found higher in the control group, lots of fat 
depositions were found in the livers of the control group, 
while no change was detected following the fermented 
Chaga diet. Fermented Chaga mushroom appears to 
exert effective role in non-insulin-dependent diabetes 
mellitus caused by obesity (Cha et al., 2006).

Reishi mushroom
The immunomodulatory and antitumor effects have been 
associated with Reishi fermented mushroom (Rubel et al., 
2018) (Fig.  4). Mice immunity following administration 
of Reishi diet showed changes as manifested by increase 
in  CD3+,  CD4+, and  CD8+  cells, whereas  CD19+  and 
 CD16+/  CD32+  showed decrease, alongside TNF-α and 
IFN-γ levels with marked decrease in lower tumor weight 
compared with control group (Rubel et al., 2018).

A. brasiliensis mushroom
Fermented mushrooms of  A. brasiliensis  (FMAE) and 
wild-growing  A. brasiliensis  (WMAE) exerted a poten-
tial hepatoprotective effect. Reduction in  CCl4-induced 
toxicity was observed following fermented mushroom 
diet administration. ALT and AST activities have been 
suppressed concurrent with an increase in antioxidant 
enzyme activities (Zhang, Han, Zhao, & Yu, 2012).

Trametes versicolor (Tv, Turkey tail)
The immune-modulating features of mycelium differ 
from that of the fermented substrate. Immunomodula-
tion effect of the initial substrate (IS), fermented sub-
strate (FS), and Trametes versicolor mycelium (TvM) 
were tested on human peripheral blood mononuclear 
cell cultures. Results revealed that CD69 was strongly 
induced by both solid and aqueous fractions of TvM, 
minor activation was observed in case of FS, while IS 
had no effect. The fermented substrate-induced increase 
in the immune-activating proinflammatory cytokines. 
The mycelium itself along with fermented substrate 
accounted mostly for the immune-activating bioactiv-
ity of a mycelial-based medicinal mushroom preparation 
(Benson et al., 2019).

Fermented Cordyceps sinensis (CS) enriched in selenium
The effect of CS on uterine cervical cancer in mice was 
investigated using methylcholanthrene (MCA)-induced 
tumor model. Application of fermented Cordyceps 
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sinensis (CS) enriched in selenium (Se-CS) resulted in 
remarkable restoration of glutathione content, lipid per-
oxidation, glutathione reductase activity, catalase activity, 
Na + /K + -ATPase activity, and glutathione S transferase 
activity, as well as immunity enhancement. Uterine cervi-
cal cancer has been treated by fermented Se-CS (Ji, Liu, 
Liu, & Wang, 2014).

Fermented Coprinus comatus
The hypoglycemic action of fermented Coprinus coma-
tus rich in vanadium (CCRV) mushrooms was investi-
gated, Fig.  5. Vanadium was absorbed by the fermented 
mushroom Coprinus comatus, which can absorb trace 
elements, at lower dosages (0.18 mg/kg/d). The blood glu-
cose and HbA1c of alloxan-induced hyperglycemic mice 
showed a decrease, and the sugar tolerance of normal 
mice was improved after mice were administered CCRV. 
In hyperglycemic rats, lesser doses of vanadium coupled 
with fermented C. comatus caused significant reductions 
in blood glucose and HbA1c levels (Han, Yuan, Wang, Li, 
& Biology, 2006). More importantly, fermented C. coma-
tus has the ability to acquire trace metals such as chro-
mium (Han et al., 2006). Moreover, fermented Coprinus 

comatus showed anti-inflammatory, antioxidant, periph-
eral antinociceptive and antihyperalgesic activity in vari-
ous models of inflammatory pain (Ren et al., 2012).

Lentinus squarrosulus (Mont.) mycelium
L. squarrosulus mycelium exhibits a potential antioxi-
dant effect through various mechanisms posing it as a 
promising product for improving feed nutrition. Fer-
mentation is generally regarded as an effective method 
to enhance antioxidative features in final food products 
(Abdullah et al., 2016). Furthermore, utilizing L. plan-
tarum 299v probiotic strain improved the antioxidant 
activity of fermented mushrooms to a level comparable 
of that in fresh mushrooms (Jabłońska‐Ryś, Skrzypc-
zak, et al., 2019b).

Conclusions and future directions
Recently, fermented food has emerged as a novel era in 
preserving and enhancing sensory attributes of food 
products. Edible mushrooms are preserved by fermenta-
tion due to their short shelf life in addition to  the pres-
ence of endogenous enzymes that help break down 

Fig. 4 Different types of mushrooms with their health benefits in terms of anti-inflammatory, anti-cancer, and hepatoprotective functions
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carbohydrates and proteins. Preprocessing mushrooms 
prior to fermentation is important to prevent these enzy-
matic reactions, especially polyphenol peroxidase. To our 
knowledge, there has not been any industrial scale of fer-
menting mushrooms, warranting the need to focus on 
optimization for preprocessing and fermentation at low 
cost to meet industrial needs. However, several recent 
studies discussed ways to improve such preservation 
techniques from certain technological aspects, and stud-
ies on the nutritional and health value of fermented fungi 
are still limited.

Several future studies analyzing the impact of fer-
mentation on mushrooms bioactive compounds are 
recommended. Moreover, ensuring the microbiologi-
cal safety of the fermented product and investigation 
of biogenic amines levels should be studied. Indigenous 
starter cultures acquisition which targeted to mush-
room fermentation to ensure fermentation control and 
produce a standardized product is recommended. Fur-
ther studies on screening the health-promoting effects 
and nutritional value of fermented mushroom as a 
replacement of animal protein in the context of safety 
measures are advised in the future alongside the iden-
tification of the exact active agents underlying these 
effects post fermentations for the potential to be for-
mulated in drug regimens.
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