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Abstract

Microorganisms such as Bacillus spp., Propionibacterium spp., Lactobacillus spp., Citrobacter spp., Enterobacter spp.,
Klebsiella spp, and Aspergillus spp. play vital roles in fermenting macromolecules present in African legumes, result-
ing in beneficial derivatives with diverse bioactivities advantageous to human health. While fermentation of legumes
is a common practice in Africa, yielding nutritious products rich in phenolic compounds, the specific contribution

of peptides generated during this process to the health-promoting qualities of legumes remains underexplored. This
review aims to demonstrate the possibility of the occurrence of bioactive peptides in fermented African legume prod-
ucts by investigating the intricate processes underlying microbial conversion of proteins into peptides and explaining
the structure—activity relationship governing their bioactivity. The review also evaluates the stability of bioactive pep-
tides during digestion in the human gastrointestinal tract, shedding light on their potential health benefits. African
fermented legume products could be utilized in various food systems such as condiments, meat binders and compo-
nents of high-protein snacks, as sources of bioactive compounds in the production of functional foods and nutraceu-
ticals. In summary, this comprehensive examination not only summarizes our understanding of the health-promoting
qualities of fermented African legume products but also underscores their potential as sustainable food sources

for commercial utilization in diverse food industries.
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Introduction
Fermentation is a food processing method proven to
enhance nutritional content, extend shelf life, decrease
cooking time, reduce flatulence-causing carbohydrates
such as raffinose family oligosaccharides (RFOs), improve
protein digestibility and diminish levels of antinutri-
ents and allergenic compounds in legumes (Christensen
et al., 2022; Seo & Cho, 2016; Materia et al., 2021; Park-
ouda et al., 2009). For example, trypsin inhibitors, hydro-
gen cyanide, saponin and oxalate were significantly
(p<0.05) decreased after 72 h Rhizopus oligosporus fer-
mentation of the Mucuna pruriens legume (Ezegbe et al.,
2023). A fermentation process utilizing legumes provides
a sustainable approach to food production and envi-
ronmental conservation, which can contribute towards
socio-economic development (Maclean et al., 2011).
Legumes represent valuable sources of bioactive sub-
stances pivotal for enhancing human health in a sus-
tainable dietary framework (Ibsen et al., 2022; Singh
et al,, 2021). Considering the escalating incidence of
noncommunicable diseases (NCDs) such as cancers,
cardiovascular diseases, and type 2 diabetes, with 41
million deaths reported globally each year (World
Health Organization (WHO), 2022), there is a growing
interest in harnessing bioactive peptides from sources
such as legumes. These peptides offer promising

avenues for combating oxidative stress, a key contribu-
tor to NCDs, as poor dietary practices exacerbate the
risk of these diseases (World Health Organization
(WHO), 2022). A redox imbalance can cause oxida-
tive stress and inflammation, which could damage vital
biomolecules within the body (Seyedsadjadi & Grant,
2021), and this necessitates the intake of dietary anti-
oxidants such as bioactive peptides (Paula et al., 2022;
Wei et al., 2023).

Bioactive peptides, characterized by molecular
weights below 10 kDa, are encoded within various
dietary proteins that exert their biological activities on
release from their parent proteins (Mora et al., 2019).
These peptides may be derived through the action of
microbial extracellular proteases, which are enzymes
either bound to the microbial cell envelope or secreted
into the fermentation medium (Christensen et al.,
2022). The proteases encompass both exopeptidases
and endopeptidases, and cleave peptide bonds at either
the ends or within the internal sections of polypeptide
chains, which generates a diverse array of peptides in
the fermentation environment (Raveendran et al.,
2018). For example, certain strains of Bacillus spp. are
known to secrete alkaline proteases, including serine
proteases and neutral metalloproteases (Mantsala &
Zalkin, 1980), yeasts produce aminopeptidases and



Moyo et al. Food Production, Processing and Nutrition (2024) 6:90

carboxypeptidases (Mirzaei et al., 2021), and lactic acid
bacteria (LAB) release serine protease, zinc metallopro-
tease and aminopeptidase C (Christensen et al., 2022;
Juillard et al., 2021).

There is a reasonable case for the study of the role of
peptides generated by microbial enzyme proteolytic
activity during fermentation of African legumes, as there
is a paucity of data regarding their health-conferring ben-
efits. The bioactivities commonly reported are frequently
ascribed to the presence of phenolic compounds. Studies
have linked the antioxidant activities of cowpea (Vigna
unguiculata), African yam bean (Sphenostylis stenocarpa
Harms) and bambara groundnut (Vigna subterranea L.
Verdc) to the phenolics present in fermented samples
(Kapravelou et al., 2014; Oboh et al., 2008, 2009). Despite
these findings, recent studies have proved the role of pep-
tides in antioxidant activity, antihypertensive activity,
anti-obesity and anticancer activity found in non-African
fermented legumes such as the common bean, soybean,
bitter bean, pea and red bean (Jakubczyk et al., 2017;
Mubhialdin et al., 2020; Vermeirssen et al., 2003; Wei et al.,
2023; Xiao et al., 2018). The efficacy of bioactive peptides
derived from fermented legumes centers on their stabil-
ity, bioaccessibility in the gastrointestinal tract (GIT) and
subsequent bioavailability, as these peptides need to be
resistant to the protease digestive enzymes in the GIT for
their bioactivity to be retained (Pei et al., 2022).

This review proposes to highlight the necessity for
research into the potential bioactive role of peptides pre-
sent in African fermented legumes. It will explore the
proteolytic activities responsible for releasing various
bioactive peptides and investigate their structure—activ-
ity relationship. Additionally, the review will evaluate the
stability of bioactive peptides derived from fermented
legumes in the gastrointestinal tract. By emphasizing the
significance of bioactive peptides in fermented legumes
and their stability, the review aims to advocate for their
utilization in commercial food processes, such as in the
production of condiments, meat binders and high-pro-
tein snacks. It also advocates their use as sources of bio-
active compounds in the production of functional foods
and nutraceuticals, which can promote public health
improvements.

Overview of fermented legumes in Africa,
fermentation methods and inherent
microorganisms

Various legumes (cultivated exotic species or species
indigenous to Africa) have historically been subjected to
either spontaneous/traditional, controlled, or back-slop-
ping fermentation techniques in Africa (Fig. 1). Spon-
taneous fermentation is a commonly used traditional
method. Both solid-state substrates and submerged
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fermentation are used. The dominant microorganisms
and fermentation conditions then determine the tra-
jectory of fermentation to an alkaline or acidic pH. As
shown in Table 1, most spontaneously fermented leg-
umes are characterized by alkaline fermentation in which
Bacillus spp. dominate. Some studies have used mixed
inocula consisting of Lactobacillus spp., Bacillus spp., fil-
amentous fungi spp. and Phycomycetes spp. for controlled
fermentation.

The processing technique employed prior to spontane-
ous fermentation often involves soaking the legume seeds
for 12-24 h in water to enable the subsequent dehull-
ing process. Dehulling is a necessary step as legumes
are known to contain antinutrients (phytates, lectins
and protease inhibitors) in their seed coat which could
inhibit ideal fermentation conditions. The seeds are then
boiled for 15 min to 2 h or more depending on the tough-
ness of the bean cotyledon. During boiling the plant cell
walls are degraded, which facilitates access to the micro-
bial enzymes. In addition, the process gelatinizes starch
which allows microorganisms to efficiently utilize the
starch as a source of energy and carbon. The boiling also
assists in eradicating harmful microorganisms and anti-
nutrients. Boiling may also activate the germination of
beneficial Bacillus spp. Spores which can enhance the
overall fermentation process (Luu et al, 2015). After
boiling, the legumes are drained, typically wrapped in
clean clothes, jute bags or banana leaves (Musa sapien-
tum Linn.) (Okwunodulu & Agha, 2020), and left to fer-
ment at room temperature for several days (2-21). The
wrapping material assists in controlling humidity and
gradually increasing the temperature of the fermenting
legumes. This practice also selectively influences the type
of microorganisms which will grow as the fermentation
proceeds. Various microorganisms are present at dif-
ferent stages of spontaneous fermentation (Senanayake
et al., 2023).

It must be emphasized that during fermentation pro-
cesses, it is crucial to maintain hygienic conditions and
employ appropriate sanitation practices. Certain sponta-
neously fermented products (Table 1) may harbour path-
ogenic microorganisms such as Staphylococcus aureus
and Bacillus cereus, which are known to cause foodborne
illnesses (Agunwah et al., 2024; Chin et al., 2024). Envi-
ronmental factors such as temperature, pH and relative
humidity may permit the colonization of fungi such as
Aspergillus parasiticus and Aspergillus flavus, which
can generate Aflatoxin Bl, a toxic substance harmful to
humans (Humza et al, 2021; Olagunju & Ijabadeniyi,
2021). It is therefore important to develop safe fermen-
tation practices, with stable starter cultures and con-
trolled fermentation that enables the regulated addition
of selected microorganisms.
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Legume

Spontaneous

solid-state/submerged fermentation

Inoculation (Culture from spontaneous
fermentation)

Wrapped with cloth, jute bags or banana
leaves.

l

Fermentation**

l
|

Back-slopping

solid-state/submerged fermentation

Inoculation (Culture from spontaneous
fermentation)

Werapped with cloth, jute bags or banana
leaves.

*Some legumes are dehulled 1% and
the soaked

Soaking (12-24 hr) or boiling (5-8 hr) and *dehulling.

Some legumes include an additional
step of boiling or soaking again after

< dehulling.

Controlled

solid-state/submerged fermentation

Sterilization (Autoclave) 10-20 min, at
15psi

Inoculation (single or mixed culture)

Fermentation**

Fermentation**

legume fermentation. B, C Show spontaneously alkaline fermented African locust bean

(Parkia biglobosa). D Shows spontaneously alkaline fermented cowpea (Vigna unguiculata)

In controlled fermentation, seeds submerged in water
or slurry are autoclaved at 121 °C for 10-20 min, and
an inoculum of 10°~10® cells/mL at a range of 2%-10%
(v/v) is added (Azeke et al., 2005; Dueiias et al., 2005;
Isu & Ofuya 2000; Kapravelou et al., 2014; Limoén et al.,
2015). The autoclaving process is conducted to eradi-
cate any microbes present in the substrate, but can cause
Maillard reactions and affect the growth of inoculated
microorganisms. In this event the fermentation medium
temperature (26 °C to 45 °C) is then usually set according
to the type of microbe inoculated into the substrate, as
presented in Table 1.

Alkaline-fermented beans are characterized by a strong
ammonia odour and sticky grayish mucilage, which is a
mixture of poly gamma glutamic acid (PGA) and fructan.
Acid-fermented products are characterized by a sour
taste, among other attributes depending on the type of
microorganism present. Based on country and legume
type, these fermented legume products are identified

by different names, such as Ugba (Nigeria), Iru (Nigeria
and West Africa), Dawadawa (Ghana and Nigeria), Siljo
(Ghana, Nigeria and Senegal), Soumbala (Burkina Faso,
Mali and Ghana), Netetu (Senegal and Gambia), Aitin
(West Africa) Kinda (Ghana and Nigeria), Owoh (Nige-
ria), Okpehe (Nigeria), Kpaye (Benin and Togo) and Soy-
daddawa (Nigeria and other West African countries).

Important characteristics of parent proteins

in legumes commonly used for fermentation

in Africa

The microbial utilization of proteins as a substrate may
be influenced by seed protein structural characteris-
tics. These characteristics vary within legumes, and
differences may affect the physiochemical properties
of the proteins and their subsequent utilization in food
systems. Legume proteins can be classified according
to gene ontology (GO) into three domains, biological
process, cellular component and molecular function
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(Capriotti et al., 2014). Storage proteins (globulins,
albumins, prolamins and glutelins) which belong to
the molecular function domain, occur in large quanti-
ties (70 —83%) in the seed and serve as nutritional res-
ervoirs (Capriotti et al., 2014). Globulins, which are
soluble in salt solutions, are the most abundant seed
proteins (70-80%) and are categorized by their sedi-
mentation coefficients (S) 2S, 7S, 11S, 12S and 15S,
with 7S (vicilin) and 11S (legumins) constituting the
major portion of globulins (Bennetau-Pelissero, 2019;
Shevkani et al., 2019). The 2S proteins comprise globu-
lins and albumins (Srivastava, 2002), although the coef-
ficient S can vary based on extraction conditions and
species (Srivastava, 2002).

In the mature seed, the 11S legumin is a hexamer
composed of 6 subunits. Each subunit consists of two
polypeptides (a acidic and P basic units) linked by a
disulfide bridge (Srivastava, 2002). These legumins pos-
sess more sulphur-rich amino acids (methionine and
cysteine) than vicilins (Neji et al., 2022). The 7S vicilin
is a trimer of polypeptides (a, o’ and B) which can be
identical or nonidentical and are linked by noncova-
lent hydrophobic interactions (Shevkani et al., 2019).
These vicilins lack disulfide bonds due to the absence
of cysteine in their structure, and are frequently glyco-
sylated (Shevkani et al., 2019). In Phaseolus spp., such
as in the lima bean, the predominant globulin is phaseo-
lin (56.20%) (Palupi et al., 2022), in Vigna unguiculata
spp. (cowpea), the predominant globulins are a-vignin,
B-vignin and y-vignin (L6épez-Barrios et al., 2014), and
the predominant proteins in Glycine max (soybean) are
B-conglycinin (7S vicilin) and glycinin (11S legumin)
(Aguirre et al., 2014).

Albumins, which are soluble in water, constitute
10-20% of legume seed proteins and consist of 4 kDa
and 9 kDa polypeptide chains linked by disulfide bonds
(Day, 2013; Shevkani et al., 2019). Albumins consist of
proteins such as lectins, amylase inhibitors and protease
inhibitors (Arntfield & Maskus, 2011) which possess
higher amounts of cysteine and methionine than globu-
lins. Vigna subterranea (bambara groundnut) proteins
mostly consist of albumins (14-71%), while cowpea,
lima bean and soybean contain 20-25%, 18.47% and
10-20%, respectively (Gulzar & Minnaar, 2017; Palupi
et al., 2022). Overall, legumes are considered a poor
source of sulphur-containing amino acids and trypto-
phan (Bennetau-Pelissero, 2019).

Protein secondary structure can be described in terms
of the composition of a-helixes, p-sheets, B-turns, irregu-
lar coils and random coils (Yu et al., 2024). The second-
ary structure of legumes is mainly composed of -sheets
with few a-helices (Neji et al.,, 2022). A higher ratio of
[B-sheets to a-helixes can cause low protein digestibility,
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among other factors (Shevkani et al., 2019). For the ter-
tiary structure, protein subunits can be arranged, con-
nected and maintained by the presence of noncovalent
bonds such as salt bridges, hydrogen bonds and disulfide
bonds (Yu et al., 2024).

Microbial degradation of protein and release

of peptides during legume fermentation

Several reactions occur during fermentation to modify
complex substrates into simple compounds (Chris-
tensen et al., 2022) such as peptides, amino acids and
ammonia (via proteolysis), fatty acids (via lipolysis)
and monosaccharides (via degradation of poly and oli-
gosaccharides) (Kouakou et al., 2021). For proteins to
undergo degradation into peptides and amino acids,
the peptide bonds must be made accessible for micro-
bial proteolytic enzymes. Denaturation, which involves
unfolding or altering the conformation of proteins, can
be induced by changes in pH and temperature. These
changes can disrupt hydrogen bonds and other non-
covalent interactions crucial for maintaining intricate
protein structures such as the complex quaternary
structure (globulins), tertiary structures and second-
ary structures like B-sheets and a-helices. The use of an
appropriate processing technique before fermentation of
legumes may enhance the proteolytic ability of microbial
enzymes during fermentation (Neji et al., 2022; Salazar-
Villanea et al.,, 2016). When denaturation occurs, the
peptide bonds are exposed to hydrolysis by proteolytic
enzymes, during which the protein is hydrolyzed into
macromolecular peptides, small molecule peptides and
amino acids (Mu et al., 2024).

Microorganisms present in the substrate may produce
extracellular proteolytic enzymes that could be bound
to the microbial cell envelope, or released into the fer-
mentation environment (Christensen et al., 2022) for the
hydrolysis of proteins and subsequent release of peptides
and amino acids, as illustrated in Fig. 2. In some strains
the proteolytic system includes a cell envelope protein-
ase (CEP), which allows extracellular proteins to be bro-
ken down into peptides short enough to be taken up by
peptide transport systems (oligopeptide permease (Opp),
ion-linked transporter (DtpT), ABC transporter (Dpp))
(Christensen et al., 2022; Kayitesi et al., 2023). Lactobacil-
lus helveticus LMG 11474 was found to release more of
its proteases into the fermentation medium for the fer-
mentation of pea protein, rather than utilizing cell-bound
proteases (Vermeirssen et al., 2003). The Bacillus subti-
lis group may produce multiple extracellular proteinases
(Li et al., 2023). Harwood & Kikuchi, (2022) found that
the group encodes eight extracellular proteases, of which
five are serine proteases and three are metalloproteases.
Filamentous fungi, like the Aspergillus oryzae used in the
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Fig. 2 Model illustrating microbial degradation of proteins during legume fermentation

production of soy sauce during solid-state fermentation,
have produced 27 potential key proteolytic enzymes,
organisms which are also known to release extracellular
proteases (Mu et al., 2024).

All proteins present in legume seeds are potential
sources of peptides (Garmidolova et al., 2022) although
these can vary in length (2-20 amino acids) and molec-
ular weight (<10 kDa). Glycinin was found to gener-
ate approximately 95% of the peptides produced during
soybean fermentation with Bacillus subtilis ATCC 41332
and Rhizopus oligosporus NRRL 2710 (Gibbs et al., 2004).
In contrast Lactobacillus helveticus CRL 1062, Lactoba-
cillus delbrueckii subsp. lactis CRL 581 and Limosilacto-
bacillus reuteri CRL 1099 have been found to hydrolyze
more B-conglycinin soybean protein for peptide produc-
tion (Aguirre et al., 2014).

Numerous studies have shown the presence of peptides in
fermented legumes, including red bean (Xiao et al., 2018),
soybean (Wei et al., 2023), bitter bean (Muhialdin et al., 2020),
pea (Vermeirssen et al., 2003) and common bean (Jakubczyk
et al,, 2017). Peptides such as EAKPSFYLK, AIGIFVKPD-
TAV, PTEMGLDVFQSRAN, PFGNNLLTVISGSAERAPTL,

PVNNNAWAYATNFVPGK, PVANNAWAYATNFVPGQ
and YLDAIGIFVKPDTAV have been identified in bitter
beans after Limosilactobacillus fermentum ATCC9338 solid-
state fermentation (Muhialdin et al., 2020). A 3 h fermen-
tation of common bean by Lactiplantibacillus plantarum
299v at 22 °C was found to hydrolyze vicilin and legumin
J-like proteins, resulting in the production of peptides such
as INEGSLLLPH and FVVAEQAGNEEGEE, respectively
(Jakubczyk et al., 2017). Despite these advances across the
world, there is very little data regarding peptides produced
via fermentation of the African oil bean, African locust bean,
African yam bean, cowpeas, bambara groundnut, jack bean,
kersting’s groundnut and lima bean.

Some evidence of peptide presence after fermentation
of certain of these legumes exists. Oyedoh et al. (2020)
revealed a considerable concentration of peptides after
cowpea and groundnut fermentation by Lactiplantiba-
cillus plantarum CAU4347. The highest peptide con-
centrations of 80 pg/ml and 60 pg/ml, respectively, were
obtained after 48 h of fermentation. The authors con-
cluded that these peptide concentrations depended on
the proteolytic activity of the microorganisms involved.
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Protease release, classification and proteolytic activity

of microorganisms during fermentation of legumes
Proteases released by microbes are classified based on the
pH (neutral, acidic or alkaline) at which they are active
(Bustamante-Torres et al., 2021; Razzaq et al., 2019).
They can also be classified based on their functional
groups or the points at which peptide bonds are cleaved
(Razzaq et al., 2019). Exopeptidases (aminopeptidase,
dipeptidyl peptidase, tripeptidyl peptidase, carboxy-
peptidase, peptidyl dipeptidase and dipeptidase) cleave
the peptide bond close to the amino or carboxy termini
of the polypeptide, while endopeptidases cleave internal
bonds in polypeptide chains (Jisha et al., 2013), as illus-
trated in Fig. 2. The endopeptidases are further classified
into six groups, based on the catalytic residue present in
the active site, namely, serine, aspartic, cysteine, metallo,
glutamic acid and threonine proteases (Raveendran et al.,
2018). Endopeptidase generally releases macromolecular
peptides rather than amino acids, while exopeptidase is
mainly associated with the release of small molecule pep-
tides such as dipeptide, tripeptide and amino acids (Mu
et al,, 2024).

The type of enzyme released by a microorganism will
determine the cleavage of the proteins available in the
legume substrate and the consequent types and sizes
of peptides produced. Aminopeptidase N (PepN) is an
exopeptidase with broad specificity, but it mostly tends
to remove alanine and leucine residues from small pep-
tides (Chandu & Nandi, 2003). Aminopeptidase A (PepA)
is specific to the cleavage of N-terminal aspartic (Asp)
and glutamic (Glu) acids, and to a lesser extent, serine
residues (Ewert et al., 2017). Oligopeptidase (PepO) has a
high affinity for larger peptides and a preference for pep-
tide bonds with a hydrophobic amino acid in the P1 posi-
tion (Kok, Mierau, & Monnet, 2013). A study by Verni
et al. (2017) investigated the peptidase activities (PepN,
PepA and PepO) of various LAB (Enterococcus spp., Ente-
rococcus casseliflavus, Lactococcus lactis, Lactobacil-
lus sakei, Leuconostoc mesenteroides, Pediococcus spp.,
Pediococcus pentosaceus, Weissella cibaria and Weissella
koreensis) isolated from Finnish and Italian faba bean
sourdoughs. Pediococcus pentosaceus F77 was found to
possess a high PepN activity of 2.472 U, accompanied by
a low activity of PepA and PepO, while Enterococcus spp.
FO09 had a higher PepA activity (1.650 U) and lower PepN
and PepO activities.

The study of proteolytic activity of microorganisms
can assist in optimizing fermentation conditions to
produce bioactive peptides. Proteolytic activity during
the fermentation of some African legumes has been
studied, as indicated in Table 2. The proteolytic activ-
ity was either measured directly from the crude enzyme

Page 10 of 24

extract at specific times during the fermentation period
or from microorganisms isolated during fermentation
and cultured on different growth media. The pres-
ence of amino acids, proteins and carbohydrates may
influence the expression of the proteolytic system of
microbes present during fermentation (Venegas-Ortega
et al., 2019), due to the regulation of gene expression in
response to their environmental conditions (Kieliszek
et al,, 2021). The proteolytic activity of Lactiplantiba-
cillus plantarum CAU4347 was found to be higher in
fermented cowpeas than in fermented groundnuts
(Oyedoh et al., 2020). The groundnut was reported to
have higher protein contents than cowpea, although
the process of autoclaving might have increased the
amount of available nitrogen. The proteolytic system is
regulated in response to changes in available nitrogen
in the substrate to maintain the correct nitrogen bal-
ance (Kieliszek et al., 2021).

Proteolytic activities may be affected by the method
of processing (boiling or roasting of legumes) before
fermentation. For example, pre-boiled soy-dawadawa
exhibited higher proteolytic activities during fermen-
tation (2.36 Units (U)) compared to pre-roasted soy-
dawadawa (1.96 U) (Opai-Tetteh, 1999). This could
be attributed to the differences in moisture content
and protein concentration of the boiled and roasted
soy-dawadawa. The boiling and roasting processes
could have impacted changes in the protein structure
(intramolecular/intermolecular B-sheets and globu-
lar protein subunits). Research on the common bean
(Phaseolus vulgaris L.) has noted more intermolecu-
lar B-sheet aggregates in moist heated samples than in
dry heated samples (Choe et al, 2022). Intermolecu-
lar B-sheet aggregates are formed during heating and
influence lower protein digestibility (Choe et al., 2022).
The boiling process also may have increased the open-
ing of the soy-dawadawa cell wall, thereby making the
proteins much more accessible to the proteases than in
the roasted soy-dawadawa. The moist-heating approach
may cause portions of the cell wall’s middle lamellae to
separate as the pectin breaks down, increasing protein
digestibility (Choe et al., 2022). Microbial growth stages
may also influence their proteolytic activity. For exam-
ple, Bacillus licheniformis LBBL-11 isolated from an
African locust bean was found to have the highest pro-
teolytic activity (18.4 Units/milliliter (U/ml)) at a point
when bacterial growth was at its highest, i.e., after 48 h
of growth (Olajuyigbe & Ajele, 2008). This could be
because during the log phase microbial growth surges,
which increases the demand for nutrients, thereby
increasing proteolytic activity for the supply of nitrog-
enous compounds.
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Table 2 Proteolytic activity identified during fermentation of legume products or from microorganisms present in legume
fermentation

Product (Legume) Processing Fermentation pH Temperature (°C)  Proteolytic Microorganisms References
conditions before time (h) activity identified/used
fermentation

U/ml
(Cowpea) Autoclaved 0 6.40 37 0 Lactobacillus plantarum ~ (Oyedoh et al,, 2020)
24 591 ~125 CAU4347
48 5.68 ~20
72 536 ~15
(Ground nut) Autoclaved 0 6.40 0 Lactobacillus plantarum
24 565 ~80 CAU4347
48 546 ~10
72 5.19 ~5
U/ml
(Ground nut) - 0 9 45 0 Bacillus subtilis SHS-04 (Olajuyigbe & Ajele,
12 9 ~125 2008)
24 9 ~250
36 9 ~310
48 9 ~450
60 9 ~360
72 9 ~150
84 9 ~80
mol/sec
Dawadawa (African  Boiled 0 - ND ~0.00225 NI (Evans et al,, 2009)
locust bean) 24 R ~0.00223
48 - ~0.00224
72 - ~0.0026
96 - ~0.0028
120 - ~0.0027
U/ml
Iru (African Locust ~ Product obtained 0 ND 0 Bacillus licheniformis (Olajuyigbe & Ajele,
Bean) from the market 24 10 Lbbl-11 2008)
48 18
72 16
U
Ogiri-okpei (Mes-  Boiled 0 - Room temperature 0 NI (Odibo et al., 2008)
quite) 24 - ~05
48 - ~1
72 - ~5
96 - ~0.9
XS unit
Soydawadawa Boiled 0 6.59 ND 0.20 Bacillus subtilis, Bacillus (Opai-Tetteh, 1999)
(Soybean) 24 6.87 1.00 cereus, Bacillus pumilus,
48 800 300 Bac{//us licheniformis,
Bacillus firmus
72 825 4.10
Roasted 0 641 0.30
24 6.57 1.10
48 7.90 245
72 8.15 3.60

U/g
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Table 2 (continued)

Product (Legume) Processing Fermentation pH Temperature (°C)  Proteolytic Microorganisms References
conditions before time (h) activity identified/used
fermentation

Ugba (African oil Boiled 0 5.0 Room temperature  ~9 NI (Njoku & Okemadu,
bean) 1989)

12 55 ~13

24 6.0 ~27

36 6.3 ~12

48 7.0 ~11

60 72 ~15

72 8.0 ND

U/mg/min

Dawadawa (African  Boiled 0 ~60 ND 0 NI (Zebedee et al., 2022)
locust bean) 24 ~6.25 ~19

48 ~69 ~37

72 ~75 ~25

96 ~85 ~20

U/ml

Iru (African locust Product obtained 1 37 0.04 Bacillus subtilis PA2 (Olanbiwoninu.,
bean) from the market 1 0.05 Bacillus licheniformis PAg €t al, 2022)

1 0.12 Bacillus subtilis PA1

1 0.06 Bacillus subtilis PB1

1 0.03 Bacillus licheniformis PB7

1 0.08 Bacillus subtilis PB5

1 0.035 Bacillus subtilis PB6

u/ml
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Product (Legume)

Processing Fermentation

pH

Temperature (°C)

Proteolytic

Microorganisms References

conditions before time (h) activity identified/used
fermentation
Soybean-daddawa  Salted (1%) 0 ~500 Bacillus subtilis LB3 (Kolapo et al.,, 2023)
(Soybean) and salt-free and Staphylococcus
daddawa 24 ~510 xylosus SAU3 (salted)
40 ~511
65 ~1000
0 ~500 Bacillus subtilis LB3
and Staphylococcus
24 ~550 xylosus SAU3 (salt-free)
40 ~650
65 ~900
0 ~390 Bacillus subtilis LB3
and Leuconostoc mes-
24 ~500 enteroides ssp cremoris
40 ~650 (salted)
65 ~650
0 ~410 Bacillus subtilis LB3
and Leuconostoc mes-
24 ~500 enteroides ssp cremoris
40 ~510 (salt-free)
65 ~650
0 ~650 Staphylococcus xylosus
SAU3 and Leuconostoc
24 ~660 mesenteroides ssp cremo-
40 ~750 ris (salted)
65 ~810
0 ~500 Staphylococcus xylosus
SAU3 and Leuconostoc
24 ~650 mesenteroides ssp cremo-
40 ~750 ris (salt-free)
65 ~900
0 ~550 Bacillus subtilis LB3
and Staphylococcus
24 ~560 xylosus SAU3 and Leu-
40 ~580 conostoc mesenteroides
spp cremoris (salted)
65 ~800
0 ~550 Bacillus subtilis LB3
and Staphylococcus
24 ~600 xylosus SAU3 and Leu-
40 ~610 conostoc mesenteroides
spp cremoris (salt-free)
65 ~700

ND Not determined, NI Not identified, U/g Units/gram, U/ml Units/milliliter, mol/sec Moles/second, U-Unit. (U/ml) A unit of activity produces a 0.01 absorbance unit
difference at 420 nm between the sample and its blank assay, per minute, under the assay conditions (Oyedoh et al., 2020). (U/ml): One unit of protease activity was
defined as the amount of enzyme required to release 1 pg of tyrosine per ml per minute under the mentioned assay conditions (Olajuyigbe & Ajele, 2008). (mol/sec):
One unit of enzyme activity is defined as the amount of enzyme required to degrade a unit of albumin (mMol/s), under the reaction mixture conditions (Evans et al.,
2009). (U) one unit of protease activity is defined as the amount of enzyme which released 1 mg of tyrosine from casein per minute under the assay conditions (Odibo
et al.,, 2008). (XS unit): an enzyme extract which, under the stated experimental conditions, produced a filtrate with an optical density of 0.500 when measured in a

10 mm path length cell and a strength of 36 XS units per gram (Opai-Tetteh, 1999). (U/g): One unit of enzyme activity was defined as the amount of enzyme required
to produce 1 pg leucine per min under the assay conditions (Njoku & Okemadu, 1989). (U/mg/min): One unit of protease activity is defined as the amount of enzyme
which released 1 pg of tyrosine from casein per minute under the assay conditions (Zebedee et al., 2022). (U/ml): one unit of protease activity is defined as one
micromole of substrate converted per minute (Olanbiwoninu., et al., 2022)
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Fig. 3 A model illustrating the structure—activity relationship of antioxidant peptides

Structure-activity relationship of bioactive
peptides and associated health benefits

Several studies have shown the benefits of fermentation
in enhancing the bioactive properties of fermented leg-
umes in Africa (Arueya et al, 2017; Kapravelou et al.,
2014; Oboh et al., 2009). As previously mentioned, the
bioactive properties of fermented legumes are largely
associated with the presence of phenolic compounds.
Microbial enzymes play a crucial role in releasing phe-
nolics that are bound to plant cell walls, polysaccharides,
and proteins, converting them into soluble forms with
enhanced bioactivity. The fermentation process leads to
the increased presence of aglycones, which are generated
by microbial pB-glucosidases and p-glucuronidases from
phenolic glycosides, further contributing to the bioac-
tive potential (Toor et al., 2021; Aganbi et al., 2023). As
most of these legumes have high protein concentrations
that could produce bioactive peptides, research focus-
ing on the bioactivity of the produced peptides should be
of interest in Africa. Researchers from other parts of the
world have documented peptide health-promoting bio-
activity from fermented legumes, such as the common
bean, soybean, bitter bean, pea and red bean (Jakubczyk
et al, 2017; Muhialdin et al., 2020; Vermeirssen et al.,
2003; Wei et al., 2023; Xiao et al., 2018). Properties such
as antioxidant activity, antihypertensive activity, anti-
obesity, and anticancer activity have been documented in

Antioxidant structure-activity
relationship of bioactive
peptides
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these fermented legumes. Some peptides have even been
found to possess multifunctional activities, such that they
may modulate more than one physiological outcome by
affecting different targets (Lammi et al., 2019).

Antioxidant properties of peptides from fermented
legumes

Antioxidant peptides may act as proton donors, metal ion
chelators and radical scavengers (Fan et al., 2022; Xiong,
2010). These antioxidant activities rely on the molecular
weight, composition, and sequence of amino acids in the
peptide (Zou et al., 2016), as illustrated in Fig. 3. During
protein hydrolysis, the unfolding of the folded globular
structures of proteins increases the accessibility of the
electron-dense peptide bonds and R-group (functional
side chain) to the reactive species (Chai et al., 2020). Pep-
tide R-groups such as valine, alanine, proline, histidine,
isoleucine, leucine, phenylalanine, tryptophan, threo-
nine and tyrosine may scavenge radicals via the hydrogen
atom transfer (HAT) or the single electron transfer (SET)
system (Chai et al.,, 2020; Fan et al., 2022). Tryptophan
and tyrosine have indole and phenolic groups which can
donate hydrogen atoms to reactive species (Pessione
& Cirrincione, 2016). Hydrophobic amino groups (iso-
leucine, leucine, and valine), which are exposed at the
N- and C-termini, can intensify the accessibility of pep-
tides to hydrophobic targets such as the cell membrane,
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subsequently improving their bioavailability and reac-
tions with oxidants (Chai et al.,, 2020). In addition to
these structure—activity relationships, bioactive peptides
from fermented legumes could also boost the body’s anti-
oxidant defense system via the activation of the kelch-like
ECH-associated protein 1-NF-E2-related factor 2 (keapl-
Nrf2) pathway (Fan et al., 2022; Wei et al., 2023).

Lentil alkaline fermentation with L. plantarum
CECT 748 was found to inhibit reactive oxygen spe-
cies (ROS) generation in tert-butyl-hydroperox-
ide (t-BOOH)-stressed macrophage-like, Abelson
leukemia virus-transformed cell line (RAW 264.7)
macrophages by approximately 50%, in contrast to
nonfermented lentil, which had only 17.60% inhibition
(Bautista-Exposito et al., 2018). The oxygen radical
absorbance capacity (ORAC) value of the fermented
lentil was 260.11 mM (Trolox equivalent) TE/g, while
that of the unfermented lentil was 302.69 mM TE/g.
However, lentils contain both peptides (99.62 mg/g)
and phenolics (0.914 mg/g), which suggests that the
bioactivities could be attributed to either compound.
The type of peptide present might result in varying
degrees of bioactivity in particular systems due to their
structure—activity relationship. For example, a high
concentration of hydrophobic peptides in the lentil
extract may influence high solubility in RAW 264 cells,
while they may not effectively scavenge peroxyl radi-
cals through the hydrogen atom transfer process used
in the ORAC system.

Peptides such as WMYNDQDIPVINNQLDQMPR
DALEPDNRIESEGGLIETWNPNNRQ, FEEPQQSE-
QGEGR, RLNIGSSSSPDIYNPQAGR GSRQEEDED-
EDE and RGEDEDDKEKRHSQKGES identified from
the < 3 kDa fraction of L. plantarum 299v-fermented faba
bean (Vicia faba) seeds have also been found to exhibit
antiradical activity (half-maximal inhibitory concentra-
tion (ICg,)=0.02 mg/mL) (Jakubczyk et al., 2019). The
presence of tryptophan and tyrosine in a peptide, e.g.,
WMYNDQDIPVINNQLDQMPR, can contribute to
HAT reactions due to the indole and phenolic groups of
the amino acids. R- groups of amino acids such as pro-
line, isoleucine and valine could further influence the
radical scavenging capacity of the peptide.

Anti-inflammatory activity of peptides from fermented
legumes

Prolonged oxidative stress in the body can lead to
chronic inflammation and oxidative damage of biomol-
ecules. Inflammation occurs after inflammatory path-
ways are stimulated by inducing factors such as dextran
sodium sulfate (DSS), lipopolysaccharide (LPS) and other
toxicants, leading to the release of inflammatory mark-
ers (Liu et al., 2022). Peptides, particularly from soybean,
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have been shown to inhibit inflammatory markers such
as tumour necrosis factor (TNF-«), interleukin-6 (IL-6),
interleukin-1p (IL-B), nitric oxide (NO) and nitric oxide
synthase (iNOS) in RAW 264.7 macrophages (Garcés-
Rimén et al., 2022).

The size of a peptide can influence its anti-inflamma-
tory activity. Low-molecular-weight peptides (<1 kDa)
appear to possess high levels of anti-inflammatory
activity due to their reduced enzymatic recognition
and cleavage sites. This can facilitate their entry into
the bloodstream as intact structures to exert anti-
inflammatory effects on their target organs (Liu et al.,
2022). A peptide chain containing at least one hydro-
phobic amino acid, such as leucine, tryptophan and
phenylalanine, can induce anti-inflammatory proper-
ties (Liu et al., 2022). Peptides such as y-glutamul-S-
methylcysteine, y-glutamul-leucine and XLe-Val-XLe,
identified in the common bean (Phaseolus vulga L.) milk
and yogurt, inhibited TNF-a-induced interleukin-8 (IL-
8) in human colorectal adenocarcinoma (Caco-2) and
human colon carcinoma (HT-29) cells (Chen et al.,
2019). Other structural attributes of anti-inflammatory
peptides include the presence of positively charged
amino acids and the positioning of amino acids in the
peptide chain (Liu et al., 2022).

Antihypertensive activity of peptides from fermented
legumes

Peptides may regulate blood pressure by inhibiting
enzymes (angiotensin-converting enzyme (ACE)) in the
renin-angiotensin system (RAS) (Garcés-Rimén et al.,
2022). The ACE can raise blood pressure by degrading
bradykinin and by activating the conversion of angio-
tensin I to angiotensin II (Fan et al, 2022). Some food
peptides have been found to reduce hypertension (high
blood pressure) by inhibiting ACE enzymes. Structural
characteristics such as chain length, composition and
sequence can affect the ACE-inhibitory activities of pep-
tides (Daskaya-Dikmen et al., 2017). Long-chain peptides
containing aromatic tyrosine on the C-terminus can raise
ACE-inhibitory activity. With regard to amino acid posi-
tioning and composition, tetrapeptides have their first,
second and third amino acid positions occupied by tyros-
ine or cysteine, histidine, tryptophan, or methionine,
and isoleucine, leucine, valine or methionine, respec-
tively, which have known enhanced ACE-inhibitory
activity (Daskaya-Dikmen et al., 2017). Peptide fractions
(<1-3.5 kDa) from cooked tempe (Rhizopus oligospo-
rus-fermented Phaseolus lunatus L.) had significantly
(P<0.05) higher ACE inhibitory activity (84%) than
3.5—-14 kDa fractions (81%) (Pertiwi et al., 2020). This
indicates that the molecular weight (which is, in part, a
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function of the peptide chain or composition) may have
influenced the ACE-inhibitory activity.

Stability of bioactive peptides from fermented
legumes after GIT digestion

The stability and bioaccessibility of bioactive peptides
in the GIT are crucial in ensuring their absorption into
the bloodstream and utilization in the target tissues or
organs which affects their functional effect or bioactivity
as health-promoting foods (Indrati, 2021).

On food consumption, peptides from foods need to
resist digestive enzymatic actions in the GIT and cross
the intestinal epithelial barrier to reach the target organs
in an intact and active form to exert their health-pro-
moting effects (Amigo & Herndndez-Ledesma, 2020).
Gastrointestinal digestion of foods, including fermented
food, can confer additional chemical modifications to
food proteins, and may facilitate the release of new bioac-
tive peptides and/or degrade the existing peptides (Bau-
tista-Expdsito et al., 2018), as illustrated in Fig. 4. GIT
digestion has been proposed to be a dominant factor con-
trolling the formation of bioactive peptides, notably ACE
inhibitory peptides (Indrati, 2021; Sanchez-Garcia et al.,
2024; Vermeirssen et al., 2003). However, GIT proteolytic
actions can also result in the loss of amino acid residues,
which will change peptide activities, as the potential bio-
active properties of a peptide also depend on its amino

acid composition (Verni et al., 2019). In mitigation, it
has been reported that peptides with small molecules, as
well as some higher molecular weight peptides, can be
absorbed from the GIT without further digestion, which
makes amino acid composition a key factor in digestion
resistance in the GIT.

Research regarding the fate (stability/bioaccessibility)
of bioactive peptides in African fermented legumes in the
GIT is limited, although some studies have focused on
fermented legumes and their products in general, such
as fermented black beans, common beans, faba beans,
lentil seeds, lima beans, and pea seeds (Table 3), many of
which are consumed in Africa. These studies found that
the peptide contents of the digested fermented legumes
were substantially increased after GIT digestion, as illus-
trated in Fig. 4. This increase was attributed to the for-
mation of new peptides by GIT proteases and peptidases
(Bautista-Exposito et al., 2018) as well as an improved
degree of protein hydrolysis, especially at the pancreatic
stage, which can also be enhanced by fermentation (Per-
tiwi et al., 2020; Wang et al., 2022). Table 3 shows that
after undergoing GIT digestion, the fermented legume
product digests (or their peptide fractions, particularly
those<3-10 kDa) exhibited health-promoting proper-
ties/bioactivities in vitro, including ACE inhibitory activ-
ity, ORAC, ROS, anti-obesity activity and a-amylase
inhibitory activity. Pertiwi et al. (2020) revealed that the



Page 17 of 24

(2024) 6:90

Moyo et al. Food Production, Processing and Nutrition

(020t "2 12 IMILI3d)

(£107 "|e 32 1Az>qnder)

(707 “|e 10 BJDIED-Z3YPUES)

(810¢
“|e 19 01sodx3-e1sineg)

e yl-G¢

‘e €-1 (Auofew) eqy | >
payiiusptiou

sopndad paienossy

e 0'L-G'¢

M||-( UIWNB3| “UlfIDIA WO}
paAlap 95uanbas apndag
YSTALA4IALALAD dHyO
-55SHDDDDSDD ‘DINDAD
-DDSNDDADDODADD “dHd
-99499999995D ‘YSVIY
YOVADDDODOS F4DFIN
-OVO3IVAAL ‘HTTISOINI

e GelL<pue

eIl "B S0
payiiuapl jo0u
sapndad pajepossy
et el

und3| pue (ZoLo'L pue
LOLO'| 2 U7 uabiaye)
UIJIDIA “UIJIDIAUOD WO}
paALIap aduaNbas
opndad "alow pue
VSADIIAMIdANON
‘'OSHOFOIITIANFIFIATINS
“TIAMIIFIAALNA ‘HdIN
-3O3TIAMAILAMINTS
4AAY1AIIAAANAT
‘HdINIFOFTTIANIILA
“MLNT ‘SADIMAMIdA
-AQY 'SOYMIDITFIIN
RAVEECENIEIVER DN

(w/Bw 650 %) 01 dn)
paseanul A1ybi|s sem pue
1uasald sem A1l

-Aioe Alo)quyul 307

suon

-IpUOD UOIRIUSULID) UO
Buipuadap 1uasaid asam
(qw/Bw SZ'9-61"1) AnAnse
Alouqiyur asedi|-nue pue
‘(Tw/bw 59'/-87°0 %))
AuAnde Liougiyul 30

150] Sem uojeIudW

-13§ BulNp paausp AiAioe
AJONQIYUl 19U 3y 18y}
Bunedipul ‘sonpoid
pajusWIRUN Uy}

19MO] JO JejIWIS Sem g
(90,7 01 dn 946 |—8 "xoidde
wIolj) pasealdul Ajjenueis
-qns pue juasaid sem

(%) AnAnoe Alongiyul 30V

150| 49M uonIqIyul

osed|| pue AlAnde aseljewl
‘uonigiyur uononpoud
(SOY) sa1ads usbAxo
[e21pel pasesnul (OVHO)
Auoeded adueqiosge
[ed1pe) USBAX0) A3AlDe
JUBPIXOIIUR ‘PIdNPaI ING
Juasald sem (%6€) AAnde
A10}IgIyul 35RIDNS-D ‘(W
/Bu €70 %)) Aanoe
Aouqiyur (30v) swikzus
BUNISAUOD |- UISU10IbUY

UOI1RIUSULIDY | 8 21043]]

Bupjeos Y 9g ‘ainesodwan (71 snouny

uneasnued ‘uisdad wool ‘pariodal Jou Hd sniodsobjjo sndoziyy SNjoasLyd) sueaq ew]
sKep / pue
uneald  skep ¢’y €D, L€ pue D, 0¢ 266¢ (P3IINY3p) (7 spbiNA

-ued ‘uisdad ‘asejAuly-D D, ¢ ‘pa1i0dasjou Hd wnipaup|d snjjio0qoionT SNj0asSLYd) SPa3S Uesg

(sueurnd
SUS7) INOY pue Spass (eue)
SN1L3IISO SN10IN3|d  -[21SeD) PUE PUIPIRJ) S|IUST

syes 9jiq-un
-easnued ‘uisdad ‘asejAuy

skep y1
D, 87 ‘paviodal jou Hd

SSPUIAES UY}IM

uneanued ‘uisdag USLD,/5'S8 wnupjupyd snjjppqoID7T SPaas s|ua

LERTEIETEN]

ssew Jejnd>ajow apndad
pue ui04d juaised
119y} pue sapndad
pajerosse yueyiodwy

uonsabip 1| J9yye
sanuadoud annoeolg

sawAzua
Jwisiuebiooniy

(dwn ‘ainjesadway ‘Hd)
pasn sawAzua |5 SUOIPUOD UOIIRIUDWIIDS

s1onpoud Jo s3oenxa
1194} 40 sdwnba

sawiNBHa| Pa1UBLLIRY JO UORSSBIP (1]D) 10811 [RURSSIUI0ISED 013IA Ul paiejnwils Jaye saiadoid aandeolq Jo/pue sapidad aAndeolq Jo A)jigissaddeolq Jo/pue Aljigels € ajqer



Page 18 of 24

(2024) 6:90

Moyo et al. Food Production, Processing and Nutrition

e £ >pue
ey 9L > panodal jou
ui210.4d 1uaied

(€10¢ "[e 12 yAz2qnyer) '333503333AdP

B 7S PUR R 0L >
paynuapl Jou

(207’ |e 12 buepp) sopndad paiepossy

e@4 05-0L pueeay 0l >
9IX-[BA

-9IX ‘DuPnaj-|Auein|b-A
‘QUIASAdIAYIDW

(6107 "le 32 UBYD) -S-|Awein|6-A

opndadAjod-oidaid |y
ulNB3| [eUIULIRI-N WOJ)
paALRp 95uanbas apnday
"YOVONAIAdSSSSOINTY
‘SIDNOSHININAAIAIDY
"YdNOJ TONNIAIGOANAWM
'303030330HSO 49390
-3500d334 DINNINM

(610 "|e 39 %Az2qn>er) -13M953531NAdT VA

Jw
/B 1°0-490'0 O SaNjeA
05| Jamo| pap|aIk suon
-del) apndad Jo uone|osi
1ByUN4 " (TW/Bbw 61°0-8%0
055)) 1uasaid sem Al

-Anoe A1ovquyul 3V

UOo[1PIUDWIIDY O3 3NP
150] sem AlAIDR A1ougiyul
3DV SWos Jeyy bupedipul
s1onpold pajusw

-12JUn UBY1 JOMO| SeM INQ
(9%£8 01 dn 040¢ xoudde
wioly) pasealdul A|jenueis
-gns pue juasald sem

(%) AnAnoe Aoygiyur 3DV

Juasaid a1am D-4N1 AQ
pasnpul UoNa103s 87| JO
uonigiyul “'1 ‘AlAnde
Aloyewudeyul-iue Jejn|
-[92 pue ‘(qu/bw §0-1'0
957)) (Aujige buiyousnb
sjedipel |Axoiad) AIAnoe
JuepIXONUE JBjN||2D

SUOnIPUOD
uoneiusulial 9yl uo @c_
-puadap juasaid a1om
SaMIARDe AloNgIyul (Tu
/Bw 680-1£7 %))
asedi| pue (Jui/bw ¥5°0
-06'7 °D1) asepxodn]
‘(QW/Bw 10'L-6'7 *DI)
3DV (lw/bw 660-15€
953)) 519V 1surebe Ay
-Al1D€ |edIpeliuy

uoneIUSWIRY SAep / pue

sAep € 'Y € 21049q Bupyeos

uneain YTl e LE PURD, O

-ued ‘uisdad ‘asejAuly-D D, ¢ ‘pa1iodaijou Hd

Yot

uisdAn ‘uisdad ‘asejAwy D, G€ ‘pariodal you Hd

Upl-t'aim

upeanued ‘uisdad  -eladulal wool (g 01dn

UOJIBIUSWLIRY SAep / pue

sAep ¢ 'y ¢ a1049q bupyeos

unessn YTl s LE PURD, O

-ued ‘uisdad ‘asejAuy-D e ¢ ‘pauiodal jou Hd

266¢
wnipup|d snjjIPLgoIDnT

sn1odsobi|o Y

snjiydowayy sn2202
-01d2.3§ 'dds snjjI50qo1dDT
‘wnpyiq wna120qopylg

66¢
wnipjupyd snj120qo1oo7]

ur104d (eyfeg uea
WINAIDS WNstd) Spass edd

yadway ueaq xoe|g

uNBoA pue (i (7 bbna
$Nj03SDY) UeSq UOWIWOD

(4eA ] bgp)
DIDI/) SPass Ueaq eqe4

ssew Jejndajow apndad
pue uiay04d Juased
119Y3 pue sapndad

S9OUai9j)9Yy poalenosse jueyiodw

uonsabip 1|9 1a3ye
sanJadoud aanoeolg

(dwn ‘aunjesadway ‘Hd)
pasn sdwAzua |D SUOIIPUOD UOIILIUDWLIDY

sawAzua
Jwisiuebiooniy

s1onpoud Jo syenxa
11943 10 sdwnba

(panunuod) € ajqey



Page 19 of 24

(2024) 6:90

Moyo et al. Food Production, Processing and Nutrition

(£00T “[P 12 USSSIIDUWIIBA)

edi e
payiuspriou
sopndad pa1epossy

150| SeM UOo}
-eyUsWIR bupnp paAusp
Ananoe Alongiyul 30V
19U 2y3 1ey1 bunssbbns
‘sead paiuaULIdUN 0}
Jejlwis Ing (Tw/buw €20
—11°0 %)) 1ussaid sem
Aianoe Aiongiyul 30y

uisdAnowAyd-o
‘uisdAn ‘uisdag

Y8y s LE'GE-L9

3DISINGID
sa2AWoIpy22DS Jo/pUE
SN213aAY SNJJIPDGOIIDT

$910105| UIR104d By

S9OUaliajoy

ssew Jejn>ajow spndad
pue ui04d juaied
19Y1 pue sapndad
pajerosse yuepiodwy

uonsabip 1|9 19)ye
sanJadouid annoeolg

(3w ‘aamyesadwsy ‘Hd)

pasn sawAzua || SUOIIPUOD UOHIRIUBWIDS

sawkzua
Jwisiuebiooniy

s1onpoud 1o syoenxa
11943 40 sawnba

(penunuod) € ajqeL



Moyo et al. Food Production, Processing and Nutrition (2024) 6:90

percentage of ACE inhibitory activity increased slightly
after GIT digestion of fermented lima beans, attributed
to the possible formation of new ACE inhibitory peptides
during digestion. A more advanced in vitro technique
using Caco-2 cells and/or HT-29 cells also showed that
fermented common bean product digestate and peptide
fractions, particularly those <10 kDa, exhibited antioxi-
dant activity, the ability to quench peroxyl radicals in the
cell surface membrane and anti-inflammatory activity, as
well as the inhibition of IL-8 secretion induced by TNF-«
after treating the cells (Chen et al, 2019). An in vivo
absorption study in male rats revealed that a significant
portion of peptides from fermented lima bean products
can be successfully absorbed into different segments of
the small intestine (duodenum, jejunum and ileum) (Per-
tiwi et al., 2020). The absorbed peptides exhibited ACE
inhibitory activity, indicating a significant presence of
ACE inhibitory peptides after the absorption process.
Overall, these findings suggest that bioactive peptides
exhibiting the above-mentioned bioactive activities can
be stable or bioaccessible after GIT processes.

Jakubczyk et al. (2013, 2017, 2019) and Vermeirssen
et al. (2003) showed that the stability or bioaccessibility
of the bioactive peptides of fermented legumes could be
dependent on fermentation conditions such as tempera-
ture and time, as well as the microbial strains used during
fermentation (Table 3). The potential health-promoting
properties of the fermented legume products or peptides
after GIT digestion varied significantly with these con-
ditions. The likely mechanism for this effect would be
worth exploring in future research to better understand
how these fermentation conditions affect the stability/
bioaccessibility of bioactive peptides.

Bautista-Expédsito et al. (2018), Vermeirssen et al.
(2003) and Sanchez-Garcia et al. (2024) all showed that
the bioactivity of peptides, such as ACE inhibitory pep-
tides or activity obtained due to fermentation, could be
reduced or lost after GIT digestion (Table 3), likely due
to degradation of ACE inhibitory peptides by gastro-
intestinal proteases. Although ACE inhibitory activity
(%) significantly increased after GIT digestion for both
fermented and unfermented legume products, such as
in black bean tempeh, lentils seeds and flour and pea
protein isolates, the ACE inhibitory activity of the fer-
mented products was similar and/or lower than in the
unfermented products, and the unfermented prod-
ucts were at least as ACE inhibitory active as the fer-
mented ones. The authors of these studies concluded
that the similar ACE inhibitory activity in fermented
pea protein isolates after GIT digestion compared to the
unfermented ones was likely due to the adverse effect
of microbial enzymes split within the bioactive peptide
sequence in the food protein, consequently preventing
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their release by GIT proteases. There appears to be an
optimal degree of hydrolysis above which more ACE
inhibitory peptides are degraded than new peptides
are formed, which decreases the overall ACE inhibitory
activity. However, the IC5, value of the fermented prod-
uct was not quantified before GIT digestion in these
studies, and so it is difficult to determine whether there
was, in fact, an initial improvement in the efficacy of
ACE inhibitory activity due to the investigated fermen-
tation conditions in comparison to the unfermented
product. Bautista-Expdsito et al. (2018) did not show
the IC;, value of the unfermented products after GIT
digestion, and so it is unclear whether additional pep-
tide bioactivity derived from the investigated fermenta-
tion technology was lost or was only reduced. However,
Wang et al. (2022) did show that fermentation of black
beans (with R. oligosporus) had initially substantially
reduced the ACE inhibitory activity prior to GIT diges-
tion, suggesting that fermentation conditions may play
arole.

Overall, the data from the reviewed studies suggest
that a substantial portion of the bioactive peptides
from fermented legumes can be stable and bioaccessi-
ble after GIT digestion and can potentially reach their
target organs in the body to exert their health-promot-
ing effects. The stability or bioaccessibility of bioactive
peptides from fermented legumes after GIT digestion
merits further, well-designed research to validate these
findings, as the GIT digestion reported in these stud-
ies was mostly measured by an in vitro simulated GIT
model. Although in vitro assays are important in the
investigation of bioactive peptides and their stability
or bioaccessibility, more effort should be made to vali-
date their in vivo bioaccessibility.

Conclusions, recommendations and future
perspectives

Fermentation plays a key role in the development of
functional foods, especially in Africa, where a variety
of protein-rich legumes are abundant. Legumes such
as the cowpea, African yam bean and bambara ground-
nut have been traditionally fermented, either spon-
taneously or through controlled processes. Research
indicates that peptides produced during fermentation
may possess beneficial bioactivities, including antioxi-
dation, anti-inflammation and antihypertensive effects.
Further investigation is needed to fully understand
the bioactivities of peptides from fermented legumes
and to optimize fermentation conditions. Factors such
as pH, temperature, and nutrient availability can be
adjusted to enhance peptide production. The stability
of these peptides during processing and gastrointestinal
digestion requires scrutiny to ensure their bioactivity
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post-absorption. Legume cultivation and fermentation
can contribute to sustainable environmental practices
and processing techniques, potentially reducing the
incidence of non-communicable diseases related to
oxidative stress and inflammation. Functional legume
products derived from fermentation hold promise as
sources of bioactive compounds beneficial for human
health.
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