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Abstract 

Polycyclic aromatic hydrocarbons (PAHs) are classified as environmental and food contaminants, with several adverse 
health effects, especially genotoxic and carcinogenic actions. In processed meats, they are the major contaminants, 
especially those subjected to smoking processes. Considering that the population is exposed to PAHs through sev-
eral routes, and that the ingestion of contaminated food is considered the main one, evaluating the concentrations 
of these contaminants in food becomes essential, as well as the exposure and risk to the population at different ages 
through ingestion of the evaluated products. In the current study, the levels of nine PAHs (PAH9) were measured 
in 205 processed meat products commercially available and with high consumption in Brazil. The methodology 
involved saponification, extraction with n-hexane, purification with solid-phase extraction (SPE) silica cartridges, 
and quantification by liquid chromatography with fluorescence detection. In general, 83% of all samples were con-
taminated with at least one of the studied PAHs, and the measured PAH9 levels ranged between < LOQ-108.24 µg/
kg. The highest mean of total PAHs was found in smoked sausage (108.24 μg/kg), while the lowest content was found 
in ham (1.83 μg/kg). Benzo[a]pyrene (BaP) and PAH4 (benz[a]anthracene, chrysene, benzo[b]fluoranthene, and BaP) 
exceeded the maximum permissible limits of the European Union (EU) in three (1.5%) and 18 samples (8.7%), respec-
tively. The results of margin of exposure results (MOE ≥ 10,000) and incremental lifetime cancer risk (ILCR) values 
(10 − 6 < ILCR < 10 − 4) in all ten types of meat indicated there were low significant potential health problems related 
to meat products consumption for the Brazilian population.
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Graphical Abstract

Introduction
Meat is an important source of protein in the human 
diet, providing essential amino acids along with vita-
mins, minerals, and fatty acids (Dutta et al. 2022; Whit-
ton et  al. 2021). Processed meats, including sausage 
and others, are often associated with industrially pro-
duced products that undergo curing and/or smoking 
processes, potentially contributing to the formation of 
carcinogenic compounds such as polycyclic aromatic 
hydrocarbons (PAHs) that can lead to adverse health 
effects (Geiker et al. 2021).

Polycyclic aromatic hydrocarbons (PAHs) are con-
taminants composed of fused carbon and hydrogen 
aromatic rings, formed through the incomplete com-
bustion of organic materials, and are classified as prior-
ity contaminants. In the environment, PAHs originate 

from both natural sources, such as forest fires and 
volcanic emissions, and predominantly from anthro-
pogenic sources, including coal combustion, vehicle 
emissions, lubricating oils used in engines, and ciga-
rette smoke. Humans are exposed to PAHs through 
inhalation, skin contact, and diet; however, dietary 
intake significantly impacts non-occupational expo-
sure, with food consumption accounting for over 70% 
of exposure in non-smokers (Mallah et  al. 2022; Sam-
paio et al. 2021; Sun; Wu; Gong, 2019).

The effects of PAHs on human health depend on vari-
ous factors, including the duration and route of expo-
sure, concentration, and toxicity (IARC 2010, 2012; 
Sampaio et  al. 2021). Most studies associate PAHs 
effects with carcinogenicity, and recent data sug-
gest that frequent exposure may increase the risk of 
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oxidative stress, thrombosis, hypertension, myocardial 
infarction, and cardiovascular disease (Mallah et  al. 
2022; Mirzababaei et  al.  2022; Sampaio et  al. 2021; 
Zhang et al. 2020).

The International Agency for Research on Cancer 
(IARC) classified carcinogenic substances into four cat-
egories: Group 1 (carcinogenic to humans), Group 2A 
(probably carcinogenic to humans), Group 2B (possibly 
carcinogenic to humans), and Group 3 (not classifiable as 
to its carcinogenicity to humans). Benzo[a]pyrene (BaP) 
belongs to Group 1 and has been investigated for several 
decades due to its toxic effects, particularly with regard 
to genotoxicity and carcinogenicity. Other compounds 
such as benz[a]anthracene (BaA), chrysene (Chr), 
benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), 
and indeno[1,2,3-c,d]pyrene (IcdP) belong to Group 2B, 
and dibenz[a,h]anthracene (DahA) belongs to Group 2A 
(IARC 2010, 2012; Duedahl-Olesen et  al. 2015; Mallah 
et al. 2022).

Regarding the occurrence of PAHs in food, various 
categories have been investigated, with meat products 
being the most commonly studied. In these, PAHs can 
be deposited during processing, such as smoking or dry-
ing. Smoking can be carried out using direct or indirect 
methods. In the direct techniques, also known as tradi-
tional techniques, the meat is smoked in the same cham-
ber where combustion occurs, and PAHs can be formed 
due to incomplete combustion of the fuel used. Conse-
quently, these compounds may be deposited on the food 
surface (Codex 2009; Ledesma et al. 2016). The indirect 
method involves using smoke generated by a friction 
generator or liquid smoke. Additionally, meat subjected 
to a conventional drying process, using sunlight, wind or 
hot air, goes through a slow procedure that may result in 
consequences stemming from prior environmental con-
tamination or the combustion of combustible material 
to heat the air (Codex 2009; Ledesma et al. 2016; Aykın-
Dinçer 2021).

In 2008, the European Food Safety Authority (EFSA) 
CONTAM Panel recommended that the analysis of BaP 
alone was not a sufficient indicator for all the genotoxic 
and carcinogenic PAHs present in food. Instead, they 
advised evaluating four PAHs (PAH4), namely BaA, Chr, 
BbF and BaP. Additionally, they noted that there were 
no significant differences in the concentrations of PAH4 
and eight PAHs (PAH8) (PAH4, BkF, IcdP, DahA, and 
benzo[g,h,i]perylene (BghiP) (EFSA 2008). The Euro-
pean Commission considers PAH4 as indicative of the 
occurrence of these compounds in foods, and a sepa-
rate maximum level for BaP is also established for future 
data comparison (EFSA 2008). According to Regulation 
No. 835/2011, the maximum levels of BaP and PAH4 in 

smoked meat were set at 2 and 12 μg/kg, respectively (EC 
2011a).

International research on PAHs has been extensive, 
indicating that meat products are among the food items 
with the highest concentrations of PAHs (Chiang et  al. 
2021; Martorell et al. 2010). However, to our knowledge, 
national studies pertaining to these specific foods are 
still limited (Camargo; Toledo 2001; Schwert et al. 2020; 
Merlo et  al. 2021; Silva et  al.  2023), and none of them 
have focused on the diversity of categories presented in 
our study. Given the potential association between PAHs 
consumption and cancer development as a public health 
concern, it is crucial to assess PAHs levels and associated 
risks of chronic exposure through dietary intake.

The aim of this study was to investigate the concentra-
tions of 9 PAHs in processed meat products available in 
Brazil. Additionally, health risk assessments were con-
ducted for various age groups, estimating dietary daily 
intake PAHs exposure, incremental lifetime cancer risk 
(ILCR), and margin of exposure (MOE).

Materials and methods
Samples
From 2019 to 2021, a total of 205 samples of meat prod-
ucts were obtained from supermarkets and local mar-
kets in Brazil. The collected samples were classified into 
the following ten categories: fresh and smoked sausages 
(n = 55), salami (n = 30), smoked bacon (n = 23), frank-
furter sausage (n = 18), ham (n = 16), mortadella (n = 16), 
cured poultry breast including turkey, chester and 
chicken (n = 15), hamburgers (n = 15), coppa (n = 10), and 
other products [including shoulder clod (n = 2), morcilla 
(n = 2), pastrami (n = 1), salmon (n = 1), black butifarra 
(n = 1)]. The samples were triturated, homogenized, and 
stored in labeled packages protected from light at -18 °C. 
Prior to analysis, samples were thawed at room tempera-
ture after being removed from the freezer.

Chemical and materials
A certified reference standard mixture of the PAH16 
(2000 µg/mL in methylene chloride: benzene) was pur-
chased from Supelco (St. Louis, MO, USA) and used 
for analysis of nine PAHs (PAH9), including Pyr, BaA, 
Chr, BbF, BkF, BaP, IcdP, DahA, and BghiP. Individual 
solutions of PAHs were used for PAH4 identification 
and quantification as BaA, Chr, BbF, and BaP (Supelco, 
St. Louis, MO, USA). Working standard mixtures were 
prepared by diluting in acetonitrile to a concentration 
of 200  ng/mL. Ultrapure water was obtained using a 
Millipore Milli-Q Ultra-pure water system (Millipore, 
Bedford, MA, USA). Acetonitrile  (MeCN), ethanol, 
methanol (MeOH) and n-hexane were high-perfor-
mance liquid chromatography (HPLC)-grade from 
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Loba Chemie (Mumbai, IND) and Merck (Darmstadt, 
Germany), and all other chemicals used were of ana-
lytical grade. Solid-phase extraction (SPE) cartridges 
with silica sorbent (Discovery DSC-Si 500  mg/6  mL 
from Supelco) were employed along with an automated 
solid-phase extraction system (GX-274 ASPEC system, 
Gilson Inc., Middleton, WI, USA). The solution was fil-
tered through polytetrafluoroethylene (PTFE) syringe 
filters (15 mm, 0.2 μm).

PAHs analysis
PAHs were extracted according to the method 
described by  Silva et  al. (2023). Approximately 2.0  g 
of sample were weighed and placed into a glass tube. 
Subsequently, 5  mL of 2  M ethanolic KOH solution 
was added, and the mixture was hydrolyzed in a water 
bath for 3 h at 40 °C. After cooling, 5 mL of water were 
added, and then the PAHs were extracted three times 
with 10  mL of n-hexane. The combined extracts were 
transferred to a 125  mL separating funnel and mixed 
successively with 30  mL MeOH:H2O (4:1, v/v), 30  mL 
MeOH:H2O (1:1, v/v), and 30 mL of water. The mixture 
was then filtered over  Na2SO4. The organic phase was 
evaporated to dryness using a stream of nitrogen gas, 
and the residue was suspended in a solution composed 
of the concentrate plus 3.0  mL of MeCN. The SPE 
cartridge was conditioned with 3  mL of MeCN, and 
3 mL of diluted residue was loaded onto the cartridge 
(maximum flow rate: 2.0  mL/min). The cartridge was 
washed with 3 mL of MeCN, and eluate was evaporated 
to dryness at 30  °C using an Eppendorf 5301 vacuum 
concentrator (Eppendorf, Hamburg, Germany). The 
residue was reconstituted with 1.0  mL of MeCN, fil-
tered through a PTFE syringe filter, and stored in a vial 
for chromatographic analysis.

A system of ultra-high-performance liquid chromato-
graphic (UHPLC) Shimadzu Nexera® (Shimadzu, Kyoto, 
Japan) was used, consisting of a LC-30AD pump, SIL-
30AC automatic injector, DGU-20A degasser, CTO-20A 
column oven, and RF-20A fluorescence detector. The data 
elaboration was performed by the LabSolution® software 
(Shimadzu). Chromatographic separation was carried 
out on a Zorbax Eclipse PAH column (100 × 2.1  mm, 
1.8  µm, Agilent, Palo Alto, CA, USA), and Eclipse Plus 
guard column (5 × 2.1  mm, 1.8  µm, Agilent) at 30  °C 
using MeCN and water as the mobile phase for gradi-
ent elution: 0–0.9  min, 55% MeCN; 0.9–7.0  min, 75% 
MeCN; 7.0–10.0 min, 75%; 10.0–18.0 min, 100% MeCN; 
18.0–23.0 min, 100% MeCN; 23.0–27.0 min, 55% MeCN; 
and 27.0–34.0  min, 55% MeCN. The mobile phase flow 
rate was 0.4 mL/min. The injection volume was 2 μL. The 

detection was performed using fluorescence detection 
and a program to excitation and emission wavelength 
was applied: 270/390  nm (for Pyr, BaA, and Chr), and 
290/430 nm (for BbF, BkF, BaP, IcdP, DahA, and BghiP).

Quality assurance and quality control
The parameters evaluated included linearity, accuracy, 
precision (repeatability), limits of detection (LOD), and 
quantification (LOQ) (EC 2011b; INMETRO 2020). 
The matrix effect was investigated by comparing the 
slopes of curves in a fortified matrix and curves in sol-
vent (MeCN). Standard curves were prepared using 
five different concentrations of PAHs (ranging from 
0.50 to 20.0  ng/mL) in MeCN, in triplicate, for the 
standard curves, and linearity was assessed using peak 
areas measurements and concentrations determined 
by the external calibration curve method for the nine 
PAHs (PAH9). Recoveries were determined using the 
standard addition technique at three concentrations 
of spiked black matrix at low, medium, and high levels 
(three independent replicates), and were used to evalu-
ate the accuracy (%) and precision by relative standard 
deviation (RSD, %). The LOD was calculated as three 
times the standard deviation (SD) of six replicate meas-
urements of lowest concentrations of fortified sample 
(ranging from 0.25 to 1.0  µg/kg), and the LOQ was 
defined as ten times the SD, representing the lowest 
point of the calibration curve.

Exposure assessment and risk characterization
The risk indicators used in this study were: Dietary Daily 
Intake (ID), Incremental Lifetime Cancer Risk (ILCR), 
and Margin of Exposure (MOE). In this study, MOE was 
calculated for BaP, PAH4 and PAH8, while ILCR was 
determined for PAH4. If the concentrations were lower 
than the limit of quantification (LOQ), results such as 
half of the LOQ were used (Arisseto el al. 2017).

The population was divided into three age groups 
according to Instituto Brasileiro de Geografia e Estatís-
tica (IBGE) classifications: adolescents (10–19  years 
old), adults (20–59  years old), and seniors (≥ 60  years 
old),with anthropometric and food consumption data 
also incorporated (IBGE 2010, 2020a, 2020b).

The ID (ng/day) was estimated based on the concentra-
tions of PAHs and the intake rate using the equation:

where: Ci = individual PAHs concentration (ng/g); 
IR = meat product intake rate, for ham: 0.4  g/day, mor-
tadella: 0.6 g/day, sausage (fresh and smoked): 3.9 g/day, 
frankfurter sausage: 1.1 g/day, hamburger (as beef-based 

ID = Ci× IR
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preparation): 7.5 g/day, and other products (as other cold 
cuts and sausages): 0.3 g/day (IBGE 2020a).

The MOE was determined using the following 
equation:

where: BMDL10 = lower bound of a 95% confidence 
interval of the benchmark dose of PAHs indicators, that 
caused a 10% tumor incidence in animal tests (0.07, 0.34 
and 0.49  mg   kg−1 bw  day−1 for BaP, PAH4, and PAH8 
respectively) (EFSA 2008); BW = average body weight 
(for adolescents: BW = 50.5 kg; for adults: BW = 67.5 kg; 
for seniors: BW = 64.9  kg) (IBGE 2010); ID = Dietary 
Daily Intake (ng/day).

The ILCR of Brazilian population was calculated using 
the equation:

where: TEQ = toxic equivalency quotients (µg/kg); 
IR = ingestion of meat product (g/day) IBGE (2020a); 
EF = exposure frequency = 365  days/year; ED = expo-
sure duration (for adolescents: ED = 10 years; for adults: 
ED = 40; for seniors: ED = 17) (IBGE 2010, 2020a, 2020b); 
SF = carcinogenic slope factor for ingestion of BaP 
(7.3  mg/kg. day) (Wang et  al. 2021); CF = unit transfor-
mation factor  (10−6  mg/ng); BW = average body weight 
(for adolescents: BW = 50.5 kg; for adults: BW = 67.5 kg; 
for seniors: BW = 64.9 kg) (IBGE 2010); AT = average life 
expectancy (76.6 years in Brazil) (IBGE 2020b).

The TEQ (ng/kg) was estimated using the equation:

where: Ci = individual PAHs concentration (ng/g); 
TEF = 0.1 (BaA and BbF), 0.01 (Chr) and 1 (BaP).

MOE =
BMDL10× BW

ID

ILCR =
TEQ × IR× EF × ED × SF × CF

BW × AT

TEQ = �[Ci× TEFi]

Statistical analysis
Data of commercial samples were analyzed in duplicate 
experiments. All results were presented as mean. The sta-
tistical evaluation was performed using Action 2.5 Soft-
ware, Microsoft Office Excel, and Statistica 13.4 Software 
(TIBCO).

Results and discussion
Quality assurance and quality control
The method validation parameters are presented in 
Table  1 and were evaluated following the guidelines 
provided by the European Commission (EC 2011b) and 
INMETRO (2020). Figure  1 illustrates the chromato-
grams of PAH9 standards and a blank spiked sample.

No matrix effect was observed for all PAH9, and sol-
vent-based calibration curves were used for the linearity 
study based on least-squares methods. The square cor-
relation coefficients  (r2) ranged from 0.9964 to 0.9991, 
indicating good linear regressions. Accuracy rates and 
precision were evaluated by adding three concentrations 
(2.5, 5.0 and 10.0 μg/kg) of PAH9. The average recover-
ies ranged from 84.60–101.30%, with relative standard 
deviations (RSD) less than 10%, considered adequate, 
within performance criteria (EC 2011b). The LOD ranged 
from 0.15 to 0.30 µg/kg, and the LOQ ranged from 0.50 
to 1.00 µg/kg. All criteria indicated a method with good 
precision, accuracy, and sensibility for the determination 
of PAH9 in different meat products.

PAHs in processed meat samples
The occurrence of PAH9 was investigated in 205 mar-
keted meat products, and 83% (170/205)  of  the sam-
ples analyzed were contaminated with at least one PAH. 
The overall frequency (% of quantitative samples / Total 
tested samples × 100), detected range, mean, and median 
values are presented in Table  2. PAHs were quantified 
especially in the categories of hamburger (15/15) and 

Table 1 Parameters for analysis of PAH9 in meat products

Pyr pyrene, BaA benz[a]anthracene, Chr chrysene, BbF benzo[b]fluoranthene, BkF benzo[k]fluoranthene, BaP benzo[a]pyrene, IcdP indeno[1,2,3-c,d]pyrene, DahA 
dibenz[a,h]anthracene, BghiP benzo[g,h,i]perylene, r2 coefficient of determination

Analyte Calibration curve LOD (µg/kg) LOQ (µg/kg) Recovery (%) Precision 
RSD (%)

Linear range (ng/mL) r2

Pyr 1.00—20.00 0.9989 0.30 1.00 101.30 8.27

BaA 2.00—20.00 0.9964 0.30 1.00 94.18 0.63

Chr 1.00—15.00 0.9989 0.15 0.50 92.71 3.70

BbF 1.00—15.00 0.9990 0.15 0.50 84.60 2.68

BkF 1.00—20.00 0.9991 0.30 1.00 97.28 9.02

BaP 1.00—15.00 0.9981 0.15 0.50 90.43 1.80

IcdP + DahA + BghiP 1.00—20.00 0.9990 0.30 1.00 97.68 1.80
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bacon (23/23), but were also found in frankfurter sau-
sages (17/18), coppa (8/10), cured poultry breast (12/15), 
fresh and smoked sausage (52/55), ham (12/16), mor-
tadella (11/16), and salami (16/30), with individual levels 
ranging from < LOQ to 76.76 µg/kg.

The highest level of PAH9 was detected in smoked sau-
sage (108.24  µg/kg), followed by morcilla (70.56  µg/kg), 
and bacon (51.24 µg/kg). In contrast, the category of ham 
showed the lowest concentration of PAH9 (with a mean 
of 1.83 µg/kg, and a median of 1.48 µg/kg).

The mass quantification rates of individual PAHs in the 
total samples are shown in Fig. 2. It was found that ten 
types of meat had a similar distribution of PAHs, with 
Pyr and Chr being the most prevalent. In all categories, 
the three quantified PAHs at higher concentrations were 
Pyr (< LOQ-76.76 µg/kg), Chr (< LOQ-31.66 µg/kg), and 
BaA (< LOQ-17.42 µg/kg). BkF presented the lowest con-
centration (< LOQ-1.63 µg/kg).

BaP and PAH4 concentrations were < LOQ-2.44 µg/kg 
and < LOQ-48.98  µg/kg, respectively. In the evaluation 
of samples according to Regulation No. 835/2011 of the 

Fig. 1 Chromatograms of PAH9 standards (5.0 ng/mL) and a sample of ham spiked with 5.0 ng/g. Pyr pyrene, BaA benz[a]anthracene, Chr chrysene, 
BbF benzo[b]fluoranthene, BkF benzo[k]fluoranthene, BaP benzo[a]pyrene, IcdP indeno[1,2,3-c,d]pyrene, DahA dibenz[a,h]anthracene, BghiP 
benzo[g,h,i]perylene
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European Commission (EC 2011a), three samples (1.5%) 
showed unsatisfactory levels for BaP (> 2.0  µg/kg), two 
smoked sausages, and one salami. Regarding PAH4, 18 
samples (8.7%) had levels above 12.0 µg/kg, the majority 
of which consisted of smoked sausage (6 samples), fol-
lowed by salami (3 samples), fresh sausage (2 samples), 
smoked bacon (2 samples), coppa (2 samples), hamburger 
(1 sample), breast turkey cured (1 sample), and smoked 
salmon (1 sample) (Table 2). For PAH4, the most unsatis-
factory samples were affected by the highest amounts of 
Chr, followed by BaA.

The samples of frankfurter sausages, ham, mortadella, 
breast cured (chester and chicken) and other smoked 
products (morcilla, shoulder clod, pastrami, and black 
butifarra) showed satisfactory results, within the safe 
limits (EC 2011a). In general, the highest percentage of 
unsatisfactory results was detected in sausages, especially 
smoked sausages, with PAH4 concentrations ranging 
from < LOQ to 48.98  µg/kg, four times higher than the 
level by the European Commission (EC 2011a).

The results for BaP in this study showed lower values 
than those reported in other published studies. Kafouris 
et  al. (2020) evaluated the presence of PAHs in meat 
smoked using the traditional charcoal method,with a 
mean BaP concentration of 0.77  µg/kg. In Latvia, BaP 
levels in smoked pork meats ranged between LOQ 
(0.05 µg/kg) and 6.03 µg/kg (Rozentāle et al. 2015). Zhang 
et  al. (2022) found concentrations in the range of 0.51 
to 4.57  µg/kg. In 2015, the proportion of unsatisfactory 
samples according to Regulation No. 835/2011, for BaP 
(> 2  μg/kg) in 128 smoked meat samples from Latvian 
was almost 14% (Rozentāle et al. 2015), while our result 

was 1.5%, indicating lower contamination and better con-
trol of the smoking and drying process.

For PAH4, the results were similar to those reported 
by Zhang et  al. (2022), who found a range between 
2.40 and 53.56  μg/kg. This range was lower than that 
reported by Kafouris et al. (2020) (mean value 9.40 μg/
kg), and higher than that reported by Lu et  al. (2017) 
(mean value 1.75 µg/kg).

Higher concentrations of BaA and Chr were observed 
in the PAH4. Similar behavior was reported by 
Rozentāle et al. (2015), where the median values of BaA 
and Chr were 0.76 and 0.82  μg/kg, respectively. The 
most commonly observed compound in smoked meat 
products studied by Onopiuk et al. (2022) was benz[a]
anthracene.

For the determination of 16 PAHs in Slavonska 
slanina (traditionally smoked bacon), produced under 
industrial conditions, the concentrations of Pyr, BaA, 
BbF, BkF, and BaP were below the LOQ (Kartalović 
et al. 2022), which were lower than the concentrations 
found in this study.

Considering our data for PAH4 and PAH8, the maxi-
mum, mean, and median values were similar. These 
results are consistent with those presented by EFSA 
(2008), where the CONTAM Panel evaluated that when 
PAH4 are detected, PAH8 are almost always present. 
Therefore, PAH4 is a good indicator of the presence of 
carcinogenic PAHs.

The satisfactory results for ham and smoked and fresh 
sausages differ from those of some authors, which may 
be justified due to the method of smoking used. Zach-
ara, Galkowska and Juszczak (2017), when analyzing 

Fig. 2 Mass quantification rates of PAHs in the meat products. Pyr pyrene, BaA benz[a]anthracene, Chr chrysene, BbF benzo[b]fluoranthene, BkF 
benzo[k]fluoranthene, BaP benzo[a]pyrene, IcdP indeno[1,2,3-c,d]pyrene, DahA dibenz[a,h]anthracene, BghiP benzo[g,h,i]perylene
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smoked fish and meat products available in the Polish 
market, found that sausages smoked in the traditional 
way, directly over a wood fire, were characterized by 
higher PAH4 values (35.90 ± 7.18  μg/kg), compared to 
samples from industrial smoking (16.83 ± 3.37  μg/kg). 
The same ratio was found in the ham samples (tradi-
tional smoking: 15.47  μg/kg and industrial smoking: 
4.77 μg/kg).

Kartalović et al. (2022) found that in Slavonska slanina 
smoked under industrial conditions, the results for BaP 
and PAH4 were below the LOQ. However, in samples 
smoked using an open fire (the traditional method), 
the PAH4 were as follows: 14.84  μg/kg in the middle, 
10.60 μg/kg on the surface and 17.37 μg/kg in the skin.

Thus, it can be observed that the smoking method is an 
important factor in the formation of PAHs in meat prod-
ucts. Both direct and indirect smoking methods can be 
utilized, and in the direct method, contamination may be 
greater due to the deposition of PAHs produced by the 
incomplete combustion of materials used in food (Ono-
piuk et al. 2021).

Food composition is a factor that influences the for-
mation of PAHs when meat products undergo smoking 
processes, as foods with high-fat content are more sus-
ceptible to contamination due to their affinity for lipo-
philic PAHs. As suggested by Lu et  al. (2017), reducing 
the fat content from 30 to 20% in smoked pork sausages 
resulted in a decrease in PAHs levels in the samples.

During the smoking of meat products, several factors 
influence PAHs contamination, including the process and 
characteristics of the meat such as its type, lipid content, 
moisture levels, fuel type, smoking time, temperature, 
airflow, presence of food additives, distance and posi-
tion of the product relative to the heat source, cleaning 
and maintenance of the equipment, design of the smok-
ing chamber, the type of smoke generator, and equipment 
used to mix smoke and air (Ledesma et al. 2016; Onopiuk 
et al. 2021).

In a direct way, Racovita et  al. (2020) observed that 
concentrations generally increased when the temperature 
and smoking time were higher in smoked pork sausages, 
demonstrating the importance of controlling conditions 
during the process. Regarding the type of wood used, the 
Betulaceae species (alder and birch) showed higher PAHs 
levels than Fagaceae species (beech and oak).

With modern technology in the industry, smoking is 
commonly controlled in various processes. Adaptations 
have been made to the process, such as using smoke 
generated in external chambers, shortening the smok-
ing time, or using smoke flavorings. These are considered 
good manufacturing practice strategies that can signifi-
cantly reduce PAHs content in foods while maintaining 
flavor (Kafouris et al. 2020; Ledesma et al. 2016; Onopiuk 

et al. 2021; Rozentāle et al. 2015). The CAC/RCP 68/2009 
of Codex Alimentarius is the principal code for national 
authorities and manufacturers. It defines important 
points and provides guidance for recommendations to 
prevent and reduce contamination of food with PAHs 
from smoking and direct drying processes (Codex 2009).

Regarding flavorings, liquid smoke can be produced by 
condensing gases generated through oxygen-controlled 
pyrolysis of hardwood chips. Compared to traditional 
smoking techniques, it can reduce the PAH content in 
food. Additionally, it offers other industrial advantages 
such as rapid addition, consistent solution, and repro-
ducibility of the final product (Shao et al. 2023; Zhu et al. 
2022).

The type of casing used for smoked meat products can 
also influence the level of PAHs. In a study by Henríquez-
Hernández et  al. (2016), sausages wrapped in natural 
casings showed higher BaP content compared to those 
wrapped in cellulose casings. This difference is attrib-
uted to the lipophilic nature of natural casings, which, 
like PAHs, allows these compounds to permeate into 
the food. The use of nanoparticles in casings could be a 
strategy to further reduce the contamination of smoked 
products. Farhadi et al. (2022) demonstrated that sugar-
cane bagasse casings containing nanoclay adsorbed more 
PAH4 compared to a control film (fibrous casings with-
out adsorbent).

Exposure assessment and risk characterization
The ILCR method is commonly used in PAHs risk assess-
ment. The MOE method is suggested by the EFSA CON-
TAM Panel because the Scientific Committee on Food 
(SCF) and the Joint FAO/WHO Expert Committee on 
Food Additives (JECFA) concluded that the toxic equiva-
lency factor (TEF) had limitations in the available data, 
and different PAHs have various mechanisms of action 
(EFSA 2008). Some authors include both methods in 
their articles for comparison purposes (Wang et al. 2021; 
Yan et al. 2022).

The main human exposure to PAHs occurs through the 
consumption of contaminated food. In all environmental 
compartments, food, air, water, soil, and cigarettes, con-
sumption of PAHs-contaminated foods represents 96.2% 
of the exposure route in non-smokers, while it varies 
between 27–37% in smokers (Menzie and Potocki 1992; 
Paris et al. 2018).

Table  3 presents the ID, MOE, and ILCR results. The 
products that exhibited the greatest significance in daily 
intake were sausages (smoked and fresh), followed by 
hamburgers. For sausages, the mean ID values of BaP, 
PAH4, and PAH8 were 1.65, 24.35, and 29.95  ng/day, 
respectively. For hamburgers, the mean ID values of BaP, 
PAH4, and PAH8 were 2.08, 23.03, and 34.36  ng/day, 
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respectively. The daily intakes of PAH4 and PAH8 were 
approximately 7 to 20 times higher than that of BaP.

The ILCR health risk assessment indicated that these 
products do not have a considerable health risk to ado-
lescents, adults and seniors (Table  3). According to the 
U.S.EPA standard, ILCR values below  10–6 are considered 
inconsequential risk (Wang et  al. 2021). The MOE val-
ues (Table 3) of the evaluated meat products were higher 
than 10,000, indicating minimal adverse health effects 
and a low risk to public health (EFSA 2008).

Wang et al. (2021) also identified low health risks asso-
ciated with the consumption of fried and grilled fish from 
Shandong, China, among children, adolescents, and sen-
iors, based on MOE and ILCR values. Similarly, smoked 
fish from Romania showed low significant cancer risk, 
with MOE values ranging from 0.59–30.21 ×  10+6 and 
ILCR values ranging from 0.17–16.60 ×  10–6 (Racovita 
et al. 2021). Additionally, Rozentāle et al. (2015) demon-
strated that the intake of smoked meat from Latvian did 
not raise any significant toxicological concerns based on 
MOE evaluations.

Bian et al. (2023) evaluated the occurrence and health 
risks posed by heavy metals in crayfish (Procambarus 
clarkii) from Jiangsu, China. The study underscores the 
significance of monitoring contaminants and regulat-
ing metal levels in food sources. Additionally, estimated 
daily intake values of these metals were found to be 
below the provisional tolerable daily intakes established 
by regulatory authorities, indicating relatively low health 
risks associated with crayfish consumption. These results 
are similar to those found in our work, suggesting a low 
potential risk to consumer health.

Conclusion
In this study, a method utilizing SPE cleanup and 
UHPLC fluorescence quantification was successfully 
employed to determine nine PAHs across ten catego-
ries in 205 commercial meat products distributed in 
Brazil. Sausages exhibited the highest concentrations of 
PAHs, followed by hamburgers. Chrysene was the most 
frequently detected contaminant, with Pyr (< LOQ-
76.76  µg/kg) and Chr (< LOQ-31.66  µg/kg) being the 
PAHs found in the highest concentrations. BkF exhib-
ited the lowest levels (< LOQ-1.63 µg/kg). A small per-
centage of meat products (1% of the sample for BaP 
and 9% for PAH4) exceeded permitted levels in the 
European Union. However, considering the margin of 
exposures (MOE) values (upper to  10+4) and the incre-
mental life cancer risk (ILCR) values (between  10−6 
and  10−4), the risk assessment suggests a low poten-
tial health risk to consumers of meat products. While 
many PAHs are recognized as carcinogens, mutagens, 
and teratogens, our findings emphasize the importance 
of continuous monitoring of PAHs. Data collected from 
commercial samples can inform regulatory agencies in 
establishing and revising safe limits and managing risks 
to the population.
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Salami (n = 30) 0.10 1.10 1.40 43.14 18.89 21.35 5.30 11.91 7.01
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Coppa (n = 10) 0.10 1.59 1.91 44.24 13.01 15.65 3.09 6.94 4.08
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